Particle Swarm Optimization Design of Low-Power Multistage Amplifier using gm/ID Methodology

粒子群优化 计算机科学 放大器 算法 CMOS芯片 噪音(视频) 电子工程 工程类 人工智能 图像(数学)
作者
Gengyu Zhang,Xia Xiao,Jiangtao Xu,Kaiming Nie,Zhiyuan Gao
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:25 (09): 1650104-1650104 被引量:3
标识
DOI:10.1142/s0218126616501048
摘要

A design flow using the [Formula: see text]/[Formula: see text] methodology with the adaptive particle swarm optimization (PSO) algorithm is proposed for the modern analog circuit in this paper. For the advanced CMOS process, [Formula: see text]/[Formula: see text] methodology is suitable to the long channel and short channel design in all transistor operation regions. Different from the classical PSO algorithm, the adaptive PSO algorithm features the better search efficiency and faster convergence speed over the global search. Two amplifiers were designed and implemented in a standard 0.11[Formula: see text][Formula: see text]m CMOS process using MATLAB and HSPICE. Using the thermal noise coefficient [Formula: see text] and the corner frequency [Formula: see text], this paper explored the noise design budget of low-power multistage amplifier in different saturation modes. Detailed optimization of the objective function and constraints are classified into the mono-objective case and the multi-objective case. The total running times of simulations are 5649 s and 6813 s while the errors are less than 9% and 10%, respectively. Compared with CODE, GA[Formula: see text]PF and DE[Formula: see text]PF algorithms, it can save more running time and improve the accuracy of the design. Moreover, it provides more design freedom for the trade-off among gain, the gain-bandwidth (GBW) product, noise and the phase margin under worst cases without extra tweaking. Not only can the methodology work in the 0.18[Formula: see text][Formula: see text]m CMOS process, but also be migrated to the 0.11[Formula: see text][Formula: see text]m CMOS process, even in the nanometer analog circuit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
风扇没有电完成签到,获得积分10
4秒前
甜羊羊发布了新的文献求助10
5秒前
sxmt123456789发布了新的文献求助30
5秒前
5秒前
ceeray23发布了新的文献求助20
5秒前
田様应助临澈采纳,获得10
6秒前
ZQP发布了新的文献求助10
6秒前
大个应助愉快的语山采纳,获得10
9秒前
ZQP完成签到,获得积分10
11秒前
xyhua925完成签到,获得积分10
11秒前
11秒前
功不唐捐完成签到,获得积分10
11秒前
caoyuya123完成签到 ,获得积分10
11秒前
iehaoang完成签到 ,获得积分10
13秒前
领导范儿应助Mn采纳,获得10
13秒前
14秒前
14秒前
小陈呀完成签到 ,获得积分10
15秒前
15秒前
桐桐应助清脆的夜白采纳,获得10
17秒前
CodeCraft应助无隅采纳,获得10
19秒前
xixilulixiu完成签到 ,获得积分10
20秒前
20秒前
木子木子李完成签到,获得积分10
23秒前
丘比特应助小江不饿采纳,获得10
24秒前
changping应助jackten采纳,获得10
25秒前
ep_bhw发布了新的文献求助10
26秒前
FashionBoy应助胡兴采纳,获得10
27秒前
yyzhou应助Doc采纳,获得10
28秒前
32秒前
尊敬若云完成签到 ,获得积分10
33秒前
34秒前
Jasper应助科研通管家采纳,获得20
35秒前
Hello应助科研通管家采纳,获得10
35秒前
田様应助科研通管家采纳,获得10
35秒前
浮游应助科研通管家采纳,获得10
35秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265