Particle Swarm Optimization Design of Low-Power Multistage Amplifier using gm/ID Methodology

粒子群优化 计算机科学 放大器 算法 CMOS芯片 噪音(视频) 电子工程 工程类 人工智能 图像(数学)
作者
Gengyu Zhang,Xia Xiao,Jiangtao Xu,Kaiming Nie,Zhiyuan Gao
出处
期刊:Journal of Circuits, Systems, and Computers [World Scientific]
卷期号:25 (09): 1650104-1650104 被引量:3
标识
DOI:10.1142/s0218126616501048
摘要

A design flow using the [Formula: see text]/[Formula: see text] methodology with the adaptive particle swarm optimization (PSO) algorithm is proposed for the modern analog circuit in this paper. For the advanced CMOS process, [Formula: see text]/[Formula: see text] methodology is suitable to the long channel and short channel design in all transistor operation regions. Different from the classical PSO algorithm, the adaptive PSO algorithm features the better search efficiency and faster convergence speed over the global search. Two amplifiers were designed and implemented in a standard 0.11[Formula: see text][Formula: see text]m CMOS process using MATLAB and HSPICE. Using the thermal noise coefficient [Formula: see text] and the corner frequency [Formula: see text], this paper explored the noise design budget of low-power multistage amplifier in different saturation modes. Detailed optimization of the objective function and constraints are classified into the mono-objective case and the multi-objective case. The total running times of simulations are 5649 s and 6813 s while the errors are less than 9% and 10%, respectively. Compared with CODE, GA[Formula: see text]PF and DE[Formula: see text]PF algorithms, it can save more running time and improve the accuracy of the design. Moreover, it provides more design freedom for the trade-off among gain, the gain-bandwidth (GBW) product, noise and the phase margin under worst cases without extra tweaking. Not only can the methodology work in the 0.18[Formula: see text][Formula: see text]m CMOS process, but also be migrated to the 0.11[Formula: see text][Formula: see text]m CMOS process, even in the nanometer analog circuit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
番茄爱喝粥完成签到,获得积分10
2秒前
2秒前
livian发布了新的文献求助10
2秒前
DL发布了新的文献求助10
3秒前
3秒前
言西早完成签到 ,获得积分10
4秒前
WWWUBING完成签到,获得积分10
4秒前
4秒前
红柚完成签到,获得积分10
6秒前
6秒前
李爱国应助tdtk采纳,获得10
6秒前
Lxxixixi发布了新的文献求助10
6秒前
刘凯完成签到,获得积分10
7秒前
科研通AI6应助yl采纳,获得10
7秒前
CR7应助乌冬面采纳,获得20
7秒前
7秒前
7秒前
小白发布了新的文献求助20
7秒前
8秒前
就这样完成签到 ,获得积分10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
zhazhalaoke应助科研通管家采纳,获得10
9秒前
zhazhalaoke应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
聪慧小霜应助科研通管家采纳,获得10
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
聪慧小霜应助科研通管家采纳,获得10
10秒前
1111应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871