To analyze the accuracy of the Klason lignin method as applied for the determination of lignin contents in plant based-food products, Klason lignin preparations from curly kale, pears, whole wheat grains, and corn bran were chemically characterized. Characterization included routine ash and protein determinations and the extraction of fat/waxes as well as cutin/suberin depolymerization and extraction of the liberated monomers. Fat/wax and cutin/suberin amounts in the Klason lignin preparations were determined gravimetrically, and their compositions were analyzed by using GC-MS. Typical fat, wax, and cutin (and suberin) constituents such as saturated and unsaturated fatty acids, hydroxy and/or epoxy fatty acids, and phenolic acids were identified in all samples, whereas the detection of long-chain hydrocarbons, alcohols, and ketones, sterols, stanols, and dioic acids was dependent on the sample analyzed. Estimation of the contribution of non-lignin compounds to the Klason lignin contents reduced the noncorrected Klason lignin contents of the insoluble fibers from 28.7% (kale), 22.8% (pear), 14.8% (wheat), and 9.9% (corn) to maximum lignin contents of 6.5% (kale), 16.4% (pear), 4.9% (wheat), and 2.3% (corn). These data demonstrate that certain commonly used statements such as “cereal brans are highly lignified” need to be revised.