CYP3A型
小肠
新陈代谢
细胞色素P450
生物
酮康唑
体外
药物代谢
大肠
内科学
内分泌学
生物化学
医学
抗真菌
微生物学
作者
Marcella Martignoni,Geny M. M. Groothuis,Ruben de Kanter
标识
DOI:10.1124/dmd.105.009035
摘要
The liver is considered to be the major site of first-pass metabolism, but the small intestine is also able to contribute significantly. The improvement of existing in vitro techniques and the development of new ones, such as intestinal slices, allow a better understanding of the intestine as a metabolic organ. In this paper, the formation of metabolites of several human CYP3A substrates by liver and intestinal slices from rat and mouse was compared. The results show that liver slices exhibited a higher metabolic rate for the majority of the studied substrates, but some metabolites were produced at a higher rate by intestinal slices, compared with liver slices. Coincubation with ketoconazole inhibited the metabolic conversion in intestinal slices almost completely, but inhibition was variable in liver slices. To better understand the role of CYP3A in mice, we studied the relative mRNA expression of different CYP3A isoforms in intestine and liver from mice because, in this species, CYP3A expression has not been well described in these organs. It was found that in mice, CYP3A13 is more expressed in the intestine, whereas CYP3A11, CYP3A25, and CYP3A41 are more expressed in the liver, comparable to similar findings in the rat. Altogether, these data demonstrate that, in addition to liver, the intestine from mouse and rat may have an important role in the process of first-pass metabolism, depending on the substrate. Moreover, we show that intestinal slices are a useful in vitro technique to study gut metabolism.
科研通智能强力驱动
Strongly Powered by AbleSci AI