Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys

结晶 金属 玻璃化转变 过冷
作者
O.N. Senkov,D.B. Miracle
出处
期刊:Materials Research Bulletin [Elsevier]
卷期号:36 (12): 2183-2198 被引量:468
标识
DOI:10.1016/s0025-5408(01)00715-2
摘要

A topological approach based on analysis of atomic size distributions has been developed and applied to multicomponent amorphous alloys with different glass-forming ability. The atomic size distributions were obtained by plotting atomic concentrations versus atomic radii of constitutive elements. Ordinary amorphous alloys with high critical cooling rates were found to have single-peak distributions with a concave downward shape. These amorphous systems have at least one alloying element with a smaller radius, and at least one alloying element with a larger radius relative to the base element. The concentration of an alloying element decreases rapidly as the difference in the atomic sizes of the base element and the alloying element increases. Atomic size distributions of Zr, Pd, or Ln-based bulk amorphous alloys, which have a critical cooling rate in the range of 1–100 K/s, have a completely different, concave upward shape with a minimum at an intermediate atomic size. The base alloying element in these alloys has the largest atomic size and the smallest atom often has the next-highest concentration. A model that explains the concave upward shape of atomic size distributions for the bulk amorphous alloys is suggested. This model takes into account that all alloying elements in bulk glass formers are smaller than the matrix element, and some of them are located in interstitial sites while others substitute for matrix atoms in a reference crystalline solid solution. The interstitial and substitutional atoms attract each other and produce short-range ordered atomic configurations that stabilize the amorphous state. According to this model, the critical concentration of an interstitial element required to amorphize the alloy increases with increasing size difference from the matrix atom.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
番茄炒西红柿完成签到,获得积分10
1秒前
无限安蕾完成签到,获得积分10
1秒前
1秒前
飘逸蘑菇发布了新的文献求助10
2秒前
混沌完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
xg发布了新的文献求助10
4秒前
看看发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
Annie完成签到,获得积分10
6秒前
6秒前
通~发布了新的文献求助30
7秒前
7秒前
雨雾发布了新的文献求助10
8秒前
daiyapeng完成签到,获得积分10
8秒前
ivy应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
9秒前
36456657应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得30
9秒前
Hello应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
NN应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
10秒前
36456657应助科研通管家采纳,获得10
10秒前
NN应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794