Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys

结晶 金属 玻璃化转变 过冷
作者
O.N. Senkov,D.B. Miracle
出处
期刊:Materials Research Bulletin [Elsevier]
卷期号:36 (12): 2183-2198 被引量:468
标识
DOI:10.1016/s0025-5408(01)00715-2
摘要

A topological approach based on analysis of atomic size distributions has been developed and applied to multicomponent amorphous alloys with different glass-forming ability. The atomic size distributions were obtained by plotting atomic concentrations versus atomic radii of constitutive elements. Ordinary amorphous alloys with high critical cooling rates were found to have single-peak distributions with a concave downward shape. These amorphous systems have at least one alloying element with a smaller radius, and at least one alloying element with a larger radius relative to the base element. The concentration of an alloying element decreases rapidly as the difference in the atomic sizes of the base element and the alloying element increases. Atomic size distributions of Zr, Pd, or Ln-based bulk amorphous alloys, which have a critical cooling rate in the range of 1–100 K/s, have a completely different, concave upward shape with a minimum at an intermediate atomic size. The base alloying element in these alloys has the largest atomic size and the smallest atom often has the next-highest concentration. A model that explains the concave upward shape of atomic size distributions for the bulk amorphous alloys is suggested. This model takes into account that all alloying elements in bulk glass formers are smaller than the matrix element, and some of them are located in interstitial sites while others substitute for matrix atoms in a reference crystalline solid solution. The interstitial and substitutional atoms attract each other and produce short-range ordered atomic configurations that stabilize the amorphous state. According to this model, the critical concentration of an interstitial element required to amorphize the alloy increases with increasing size difference from the matrix atom.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LUAN完成签到,获得积分10
1秒前
奋斗的凡发布了新的文献求助10
1秒前
1秒前
MP关闭了MP文献求助
2秒前
sue完成签到,获得积分10
3秒前
WWXWWX发布了新的文献求助10
5秒前
科研通AI2S应助一般人采纳,获得10
5秒前
6秒前
包子完成签到,获得积分10
7秒前
7秒前
粗心的草莓完成签到,获得积分10
8秒前
HCLonely应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
bear应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
W查查发布了新的文献求助10
9秒前
小马甲应助MM采纳,获得10
10秒前
hh0发布了新的文献求助10
13秒前
jevon应助完美的海秋采纳,获得10
13秒前
14秒前
14秒前
15秒前
不配.应助开朗的蝴蝶采纳,获得20
15秒前
W查查完成签到,获得积分10
17秒前
阿仁不想搞科研完成签到 ,获得积分10
18秒前
tttt发布了新的文献求助10
19秒前
temaxs完成签到 ,获得积分10
20秒前
cuarzn完成签到,获得积分10
20秒前
O泡果奶完成签到 ,获得积分10
21秒前
21秒前
Sunshine完成签到,获得积分20
22秒前
23秒前
23秒前
HU关闭了HU文献求助
24秒前
大模型应助逢考必过采纳,获得10
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238113
求助须知:如何正确求助?哪些是违规求助? 2883372
关于积分的说明 8230519
捐赠科研通 2551496
什么是DOI,文献DOI怎么找? 1380006
科研通“疑难数据库(出版商)”最低求助积分说明 648908
邀请新用户注册赠送积分活动 624570