BackgroundResidual renal function (RRF) contributes to better patient survival in peritoneal dialysis (PD). It is known that glucose degradation products (GDP) and advanced glycation end-products (AGE) resorbed from the peritoneal cavity do not only cause local peritoneal toxicity but also systemic damage resulting in a loss of RRF. We hypothesize that GDP and AGE affect the structure and function of podocytes and investigate whether these effects can be rescued by human RAGE antibody (hRAGEab) to prevent AGE/RAGE interaction and podocyte damage.