Porosity-Based Corrosion Model for Alkali Halide Ash Deposits during Biomass Co-firing

腐蚀 扫描电子显微镜 材料科学 多孔性 碱金属 氧化物 冶金 图层(电子) 基质(水族馆) 化学工程 矿物学 复合材料 化学 地质学 工程类 有机化学 海洋学
作者
Conor P. O’Hagan,Barry O’Brien,Fionn Griffin,Barry Hooper,S.B. Leen,Rory F.D. Monaghan
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:29 (5): 3082-3095 被引量:12
标识
DOI:10.1021/ef502275j
摘要

This paper presents a physics-based model to describe accelerated corrosion because of alkali-halide-containing deposits, which form on superheater tube walls during biomass co-firing. Increased rates of corrosion during the co-firing of peat with biomass have been identified as a limiting factor on the level of biomass, which is viable to use at elevated temperatures. In the present work, a synthetic salt, representative of a 70:30 peat/biomass mix, has been applied to pure iron samples in air at 540 and 600 °C. The corrosion layers have been examined using scanning electron microscopy (SEM), optical microscopy (OM), and energy-dispersive X-ray (EDX) spectroscopy elemental mapping to provide insight into the material degradation and structure of the corrosion layer. Two distinct types of oxides are found to form on the iron substrate. Initially, a compact, uniform oxide layer forms over the substrate. As the process continues, this oxide layer degrades, leading to spalling, which sees the broken oxide pieces mix with the salt layer. Additional test samples were examined without deposits as controls to highlight the accelerated rate of corrosion. Two modeling techniques are examined: the widely used labyrinth factor method (LFM) and the newly proposed porosity-based corrosion method (PCM). The PCM uses measurements of porosity and pore radius, coupled with a physically based corrosion mechanism, to predict corrosion rates. Results from the two modeling techniques are compared, and both agree satisfactorily with experimental measurements for times of up to 28 days.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小橙子发布了新的文献求助30
1秒前
2秒前
科研通AI5应助zino采纳,获得10
2秒前
shepherd完成签到 ,获得积分10
2秒前
Brave_1完成签到 ,获得积分10
2秒前
8R60d8应助学术小黄采纳,获得10
3秒前
南宫萍完成签到,获得积分10
3秒前
3秒前
3秒前
小苔藓发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
快乐银耳汤应助FFF采纳,获得10
4秒前
shelly0621完成签到,获得积分10
4秒前
科研通AI5应助FFF采纳,获得10
4秒前
yyang完成签到,获得积分10
4秒前
穆思柔完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
脑洞疼应助Xu采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Dddd发布了新的文献求助10
7秒前
xx完成签到,获得积分20
7秒前
BEIBEI完成签到,获得积分10
7秒前
liyi发布了新的文献求助10
7秒前
苗条的山晴完成签到,获得积分10
7秒前
8秒前
mm完成签到,获得积分10
9秒前
JUll发布了新的文献求助10
9秒前
无奈抽屉完成签到 ,获得积分10
9秒前
9秒前
10秒前
风中的夏兰完成签到,获得积分10
10秒前
czt完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678