Specific aspartate residues in FET3 control high‐affinity iron transport in Saccharomyces cerevisiae

酿酒酵母 生物 生物化学 天冬酰胺 突变 定点突变 突变体 酵母 生物物理学 氨基酸 基因
作者
Maria Carmela Bonaccorsi di Patti,Maria Rosa Felice,Ivana De Domenico,Amalia Lania,F. Alaleona,Giovanni Musci
出处
期刊:Yeast [Wiley]
卷期号:22 (9): 677-687 被引量:9
标识
DOI:10.1002/yea.1237
摘要

Abstract Site‐directed mutagenesis was performed on a set of six aspartate residues of Fet3, the multicopper ferroxidase involved in high‐affinity iron transport in Saccharomyces cerevisiae , in order to comprehend the molecular determinants of the protein function. Asp312, Asp315, Asp319 and Asp320 were predicted by homology modelling to be located in a negatively charged surface‐exposed loop of the protein. Other two aspartate residues (Asp278 and Asp279) are placed close to the type 1 copper‐ and iron‐binding sites, possibly linking these sites to the negatively charged region. In vivo results showed that mutation of Asp319 and Asp320 to yield D319N and D320N derivatives strongly impairs the ability of the yeast to grow under iron‐limiting conditions. In particular, substitution of Asp320 with asparagine essentially abolished the Fet3‐dependent iron transport activity. All other mutants (D278Q, D279N, D312N and D315I) behaved essentially as the wild‐type protein. The electron paramagnetic resonance spectrum of the soluble forms of D319N and D320N showed significant changes of the copper sites' geometry in D319N but not in D320N. At variance with the membrane‐bound forms, soluble D319N and D320N derivatives were highly susceptible to proteolytic degradation, suggesting that replacement of Asp319 or Asp320 locally modifies the structure of Fet3, making the protein sensitive to proteolysis when it is not protected by the membrane environment. In turn, this might be evidence of a shielding role of the permease Ftr1, which could interact with Fet3 at the level of the aspartate‐rich negatively charged region. Copyright © 2005 John Wiley & Sons, Ltd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海螺姑娘完成签到,获得积分10
1秒前
2秒前
先玩了玉发布了新的文献求助20
3秒前
科研通AI5应助吨吨采纳,获得10
3秒前
5秒前
lyj完成签到 ,获得积分10
5秒前
sdykdx完成签到,获得积分10
5秒前
Silole完成签到,获得积分10
5秒前
科研通AI5应助快乐排骨汤采纳,获得30
5秒前
曹显旻完成签到,获得积分10
7秒前
司空若剑完成签到,获得积分10
8秒前
熊猫侠发布了新的文献求助10
8秒前
8秒前
柳叶小弯刀完成签到,获得积分10
9秒前
tsw完成签到,获得积分10
9秒前
9秒前
炙热灵发布了新的文献求助10
11秒前
kk完成签到,获得积分10
13秒前
erkin完成签到,获得积分20
13秒前
欸嘿完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
零零落落发布了新的文献求助10
14秒前
15秒前
Catalina_S应助An采纳,获得10
15秒前
科研通AI5应助乐陶采纳,获得10
16秒前
17秒前
FionaYoung发布了新的文献求助10
17秒前
17秒前
三微之廿发布了新的文献求助10
18秒前
CipherSage应助kk采纳,获得10
19秒前
朴素海亦完成签到 ,获得积分10
20秒前
考拉完成签到,获得积分20
20秒前
21秒前
22秒前
22秒前
arinnna发布了新的文献求助10
23秒前
无情的宛菡完成签到 ,获得积分10
23秒前
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486446
求助须知:如何正确求助?哪些是违规求助? 3074784
关于积分的说明 9138081
捐赠科研通 2766897
什么是DOI,文献DOI怎么找? 1518363
邀请新用户注册赠送积分活动 702909
科研通“疑难数据库(出版商)”最低求助积分说明 701501