双稳态
拓扑(电路)
非线性系统
控制理论(社会学)
正面反馈
计算机科学
生物系统
物理
生物
工程类
光电子学
电气工程
控制(管理)
量子力学
人工智能
作者
Daniel Huang,William J. Holtz,Michel M. Maharbiz
标识
DOI:10.1186/1754-1611-6-9
摘要
Bistability is a fundamental property in engineered and natural systems, conferring the ability to switch and retain states. Synthetic bistable switches in prokaryotes have mainly utilized transcriptional components in their construction. Using both transcriptional and enzymatic components, creating a hybrid system, allows for wider bistable parameter ranges in a circuit.In this paper, we demonstrate a tunable family of hybrid bistable switches in E. coli using both transcriptional components and an enzymatic component. The design contains two linked positive feedback loops. The first loop utilizes the lambda repressor, CI, and the second positive feedback loop incorporates the Lon protease found in Mesoplasma florum (mf-Lon). We experimentally tested for bistable behavior in exponential growth phase, and found that our hybrid bistable switch was able to retain its state in the absence of an input signal throughout 40 cycles of cell division. We also tested the transient behavior of our switch and found that switching speeds can be tuned by changing the expression rate of mf-Lon.To our knowledge, this work demonstrates the first use of dynamic expression of an orthogonal and heterologous protease to tune a nonlinear protein degradation circuit. The hybrid switch is potentially a more robust and tunable topology for use in prokaryotic systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI