摘要
Journal of Integrative NeuroscienceVol. 11, No. 03, pp. 313-337 (2012) ArticlesNo AccessEEG/fMRI fusion based on independent component analysis: Integration of data-driven and model-driven methodsXu Lei, Pedro A. Valdes-Sosa, and Dezhong YaoXu LeiKey Laboratory of Cognition and Personality (Ministry of Education) and School of Psychology, Southwest University, Chongqing, 400715, P. R. ChinaCorresponding author. Search for more papers by this author , Pedro A. Valdes-SosaNeuroimaging Department, Cuban Neuroscience Center, Havana, 10600, Cuba Search for more papers by this author , and Dezhong YaoThe Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China Search for more papers by this author https://doi.org/10.1142/S0219635212500203Cited by:29 PreviousNext AboutSectionsPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsRecommend to Library ShareShare onFacebookTwitterLinked InRedditEmail AbstractSimultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) provide complementary noninvasive information of brain activity, and EEG/fMRI fusion can achieve higher spatiotemporal resolution than each modality separately. This focuses on independent component analysis (ICA)-based EEG/fMRI fusion. In order to appreciate the issues, we first describe the potential and limitations of the developed fusion approaches: fMRI-constrained EEG imaging, EEG-informed fMRI analysis, and symmetric fusion. We then outline some newly developed hybrid fusion techniques using ICA and the combination of data-/model-driven methods, with special mention of the spatiotemporal EEG/fMRI fusion (STEFF). Finally, we discuss the current trend in methodological development and the existing limitations for extrapolating neural dynamics.Keywords:EEGfMRIneuroimagingfusionICABayesianSTEFF References G. K. Aguirre, E. Zarahn and M. D'Esposito, Neuroimage 8, 360 (1998), DOI: 10.1006/nimg.1998.0369. Crossref, Medline, ISI, Google ScholarO. J. Arthurs and S. J. Boniface, Clin. Neurophysiol. 114, 1203 (2003), DOI: 10.1016/S1388-2457(03)00080-4. Crossref, Medline, ISI, Google ScholarJ. Ashburner and K. J. Friston, Neuroimage 26, 839 (2005), DOI: 10.1016/j.neuroimage.2005.02.018. Crossref, Medline, ISI, Google ScholarT. Auranenet al., Hum. Brain. Mapp. 30, 1087 (2009), DOI: 10.1002/hbm.20570. Crossref, Medline, ISI, Google Scholar Baillet, S., Mosher, J. & Leahy, R. (2001) Electromagnetic brain mapping. IEEE Signal Processing Magazine, 18, 14–30 . Google ScholarR. Beisteineret al., Eur. J. Neurosci. 9, 1072 (1997), DOI: 10.1111/j.1460-9568.1997.tb01457.x. Crossref, Medline, ISI, Google ScholarC. G. Benaret al., Neuroimage 17, 1182 (2002). Crossref, Medline, ISI, Google ScholarJ. Britz, D. Van De Ville and C. M. Michel, Neuroimage 52, 1162 (2010), DOI: 10.1016/j.neuroimage.2010.02.052. Crossref, Medline, ISI, Google ScholarT. Brookingset al., Neuroimage 44, 411 (2009), DOI: 10.1016/j.neuroimage.2008.08.043. Crossref, Medline, ISI, Google ScholarE. Bullmore and O. Sporns, Nat. Rev. Neurosci. 10, 186 (2009), DOI: 10.1038/nrn2575. Crossref, Medline, ISI, Google ScholarG. Buzsaki, K. Kaila and M. Raichle, Neuron 56, 771 (2007). Crossref, Medline, ISI, Google ScholarL. Cacha and R. Poznanski, J. Integr. Neurosci. 10, 423 (2011), DOI: 10.1142/S0219635211002889. Link, ISI, Google ScholarV. D. Calhounet al., Neuroimage 30, 544 (2006), DOI: 10.1016/j.neuroimage.2005.08.060. Crossref, Medline, ISI, Google ScholarV. D. Calhounet al., Hum. Brain. Mapp. 14, 140 (2001), DOI: 10.1002/hbm.1048. Crossref, Medline, ISI, Google ScholarV. D. Calhoun, T. Eichele and G. Pearlson, Front Hum. Neurosci. 3, 17 (2009), DOI: 10.3389/neuro.09.017.2009. Medline, ISI, Google ScholarV. D. Calhoun, J. Liu and T. Adali, Neuroimage 45, S163 (2009), DOI: 10.1016/j.neuroimage.2008.10.057. Crossref, Medline, ISI, Google ScholarV. D. Calhoun and G. D. Pearlson, Neuroimage 59, 25 (2012), DOI: 10.1016/j.neuroimage.2011.06.037. Crossref, Medline, ISI, Google ScholarG. Chauvet, J. Math. Biol. 31, 771 (1993), DOI: 10.1007/BF00168045. Crossref, Medline, ISI, Google ScholarA. C. Chenet al., Neuroimage 41, 561 (2008), DOI: 10.1016/j.neuroimage.2007.12.064. Crossref, Medline, ISI, Google ScholarC. C. Chenet al., Neuroimage 59, 340 (2012), DOI: 10.1016/j.neuroimage.2011.07.066. Crossref, Medline, ISI, Google ScholarH. Chen and D. Yao, Magn. Reson. Imaging 22, 827 (2004), DOI: 10.1016/j.mri.2003.12.003. Crossref, Medline, ISI, Google ScholarS. Coombes, Neuroimage 52, 731 (2010), DOI: 10.1016/j.neuroimage.2010.01.045. Crossref, Medline, ISI, Google ScholarA. M. Daleet al., Neuron 26, 55 (2000), DOI: 10.1016/S0896-6273(00)81138-1. Crossref, Medline, ISI, Google ScholarA. M. Dale and M. I. Sereno, J. Cognitive Neurosci. 5, 162 (1993), DOI: 10.1162/jocn.1993.5.2.162. Crossref, Medline, ISI, Google ScholarJ. S. Damoiseauxet al., Proc. Natl. Acad. Sci. USA 103, 13848 (2006), DOI: 10.1073/pnas.0601417103. Crossref, Medline, ISI, Google ScholarJ. Daunizeauet al., Neuroimage 36, 69 (2007), DOI: 10.1016/j.neuroimage.2007.01.044. Crossref, Medline, ISI, Google ScholarJ. Daunizeau, H. Laufs and K. Friston, EEG-fMRI 511 (2010). Google ScholarJ. C. de Muncket al., Neuroimage 35, 1142 (2007), DOI: 10.1016/j.neuroimage.2007.01.022. Crossref, Medline, ISI, Google ScholarS. Debeneret al., Trends Cogn. Sci. 10, 558 (2006), DOI: 10.1016/j.tics.2006.09.010. Crossref, Medline, ISI, Google ScholarS. Debeneret al., J. Neurosci. 25, 11730 (2005), DOI: 10.1523/JNEUROSCI.3286-05.2005. Crossref, Medline, ISI, Google ScholarG. Decoet al., PloS. Comput. Biol. 4, e1000092 (2008), DOI: 10.1371/journal.pcbi.1000092. Crossref, Medline, ISI, Google ScholarO. Demirciet al., Neuroimage 46, 419 (2009), DOI: 10.1016/j.neuroimage.2009.02.014. Crossref, Medline, ISI, Google ScholarT. Eichele, V. D. Calhoun and S. Debener, Int. J. Psychophysiol. 73, 53 (2009), DOI: 10.1016/j.ijpsycho.2008.12.018. Crossref, Medline, ISI, Google ScholarT. Eicheleet al., Int. J. Psychophysiol. 67, 222 (2008), DOI: 10.1016/j.ijpsycho.2007.04.010. Crossref, Medline, ISI, Google ScholarT. Eicheleet al., Proc. Natl. Acad. Sci. USA 105, 6173 (2008), DOI: 10.1073/pnas.0708965105. Crossref, Medline, ISI, Google ScholarT. Eicheleet al., Proc. Natl. Acad. Sci. USA 102, 17798 (2005), DOI: 10.1073/pnas.0505508102. Crossref, Medline, ISI, Google ScholarK. Fristonet al., Neuroimage 39, 1104 (2008), DOI: 10.1016/j.neuroimage.2007.09.048. Crossref, Medline, ISI, Google ScholarK. Fristonet al., Hum. Brain. Mapp. 27, 722 (2006), DOI: 10.1002/hbm.20214. Crossref, Medline, ISI, Google ScholarK. J. Friston, Science 326, 399 (2009), DOI: 10.1126/science.1174521. Crossref, Medline, ISI, Google ScholarK. J. Friston, L. Harrison and W. Penny, Neuroimage 19, 1273 (2003), DOI: 10.1016/S1053-8119(03)00202-7. Crossref, Medline, ISI, Google ScholarK. J. Fristonet al., Hum. Brain Mapp. 2, 189 (1995), DOI: 10.1002/hbm.460020402. Crossref, Google ScholarM. I. Garridoet al., Proc. Natl. Acad. Sci. USA 104, 20961 (2007), DOI: 10.1073/pnas.0706274105. Crossref, Medline, ISI, Google ScholarG. H. Glover, Neuroimage 9, 416 (1999), DOI: 10.1006/nimg.1998.0419. Crossref, Medline, ISI, Google ScholarR. I. Goldmanet al., Neuroreport 13, 2487 (2002), DOI: 10.1097/00001756-200212200-00022. Crossref, Medline, ISI, Google ScholarR. I. Goldmanet al., Neuroimage 47, 136 (2009), DOI: 10.1016/j.neuroimage.2009.03.062. Crossref, Medline, ISI, Google ScholarS. Gonzalez Andinoet al., Int. J. Bioelectromag. 3, (2001). Google Scholar Gotman, J. (2008) Epileptic networks studied with EEG-fMRI. Epilepsia 49 Suppl., 3, 42–51 . Google ScholarK. Groeninget al., Neuroimage 46, 827 (2009), DOI: 10.1016/j.neuroimage.2009.02.026. Crossref, Medline, ISI, Google ScholarA. R. Groveset al., Neuroimage 54, 2198 (2011), DOI: 10.1016/j.neuroimage.2010.09.073. Crossref, Medline, ISI, Google ScholarD. J. Hagler Jr.et al., Hum. Brain Mapp. 30, 1290 (2009), DOI: 10.1002/hbm.20597. Crossref, Medline, ISI, Google ScholarL. M. Harrisonet al., Neuroimage 38, 677 (2007), DOI: 10.1016/j.neuroimage.2007.07.032. Crossref, Medline, ISI, Google ScholarU. Hasson, R. Malach and D. J. Heeger, Trends Cogn. Sci. 14, 40 (2010), DOI: 10.1016/j.tics.2009.10.011. Crossref, Medline, ISI, Google ScholarU. Hassonet al., Science 303, 1634 (2004), DOI: 10.1126/science.1089506. Crossref, Medline, ISI, Google ScholarH. Helmholtz, Annalen der Physik und Chemie 165, 211 (1853). Crossref, ISI, Google ScholarR. N. Hensonet al., Hum. Brain Mapp. 31, 1512 (2010), DOI: 10.1002/hbm.20956. Crossref, Medline, ISI, Google ScholarR. N. Hensonet al., Neuroimage 46, 168 (2009), DOI: 10.1016/j.neuroimage.2009.01.062. Crossref, Medline, ISI, Google ScholarS. G. Horovitzet al., Proc. Natl. Acad. Sci. USA 106, 11376 (2009), DOI: 10.1073/pnas.0901435106. Crossref, Medline, ISI, Google ScholarR. J. Husteret al., J. Neurosci. 32, 6053 (2012), DOI: 10.1523/JNEUROSCI.0447-12.2012. Crossref, Medline, ISI, Google ScholarJ. R. Iveset al., Electroencephalogr. Clin. Neurophysiol. 87, 417 (1993). Crossref, Medline, Google ScholarM. J. Jafriet al., Neuroimage 39, 1666 (2008), DOI: 10.1016/j.neuroimage.2007.11.001. Crossref, Medline, ISI, Google ScholarI. Kida, F. Hyder and K. L. Behar, J. Cereb. Blood Flow Metab. 21, 585 (2001). Crossref, Medline, ISI, Google ScholarS. J. Kiebel, O. David and K. J. Friston, Neuroimage 30, 1273 (2006), DOI: 10.1016/j.neuroimage.2005.12.055. Crossref, Medline, ISI, Google ScholarS. J. Kiebel, M. I. Garrido and K. J. Friston, Neuroimage 36, 332 (2007), DOI: 10.1016/j.neuroimage.2007.02.046. Crossref, Medline, ISI, Google ScholarN. Lange and S. L. Zeger, J. Royal Statistical Society: Series C (Applied Statistics) 46, 1 (1997), DOI: 10.1111/1467-9876.00046. Crossref, ISI, Google ScholarH. Laufs, Neuroimage 62, 1056 (2012), DOI: 10.1016/j.neuroimage.2012.01.039. Crossref, Medline, ISI, Google ScholarH. Laufset al., Neuroimage 40, 515 (2008), DOI: 10.1016/j.neuroimage.2007.11.039. Crossref, Medline, ISI, Google ScholarH. Laufset al., Neuroimage 19, 1463 (2003), DOI: 10.1016/S1053-8119(03)00286-6. Crossref, Medline, ISI, Google ScholarH. Laufset al., Proc. Natl. Acad. Sci. USA 100, 11053 (2003), DOI: 10.1073/pnas.1831638100. Crossref, Medline, ISI, Google ScholarM. Lauritzen, Nat. Rev. Neurosci. 6, 77 (2005), DOI: 10.1038/nrn1589. Crossref, Medline, ISI, Google ScholarX. Lei, J. Hu and D. Yao, Brain Topography 25, 27 (2012), DOI: 10.1007/s10548-011-0187-9. Crossref, Medline, ISI, Google ScholarX. Lei, C. Luo and D. Yao, Int. J. Bioelectromagn. 13, 249 (2011). Google ScholarX. Leiet al., PloS One 6, e24642 (2011), DOI: 10.1371/journal.pone.0024642. Crossref, Medline, ISI, Google ScholarX. Leiet al., Neuroimage 52, 1123 (2010), DOI: 10.1016/j.neuroimage.2010.01.024. Crossref, Medline, ISI, Google ScholarX. Leiet al., Comput. Biol. Med. 39, 978 (2009), DOI: 10.1016/j.compbiomed.2009.07.012. Crossref, Medline, ISI, Google ScholarX. Leiet al., Hum. Brain Mapp. 32, 1141 (2011), DOI: 10.1002/hbm.21098. Crossref, Medline, ISI, Google ScholarX. Lei, P. Yang and D. Yao, IEEE Trans. Neural. Syst. Rehabil. Eng. 17, 521 (2009). Crossref, Medline, ISI, Google ScholarP. LeVanet al., Neuroimage 49, 366 (2010), DOI: 10.1016/j.neuroimage.2009.07.064. Crossref, Medline, ISI, Google ScholarV. Litvak and K. Friston, Neuroimage 42, 1490 (2008), DOI: 10.1016/j.neuroimage.2008.06.022. Crossref, Medline, ISI, Google ScholarA. K. Liu, J. W. Belliveau and A. M. Dale, Proc. Natl. Acad. Sci. USA 95, 8945 (1998), DOI: 10.1073/pnas.95.15.8945. Crossref, Medline, ISI, Google ScholarZ. Liuet al., Neuroimage 46, 989 (2009), DOI: 10.1016/j.neuroimage.2009.03.028. Crossref, Medline, ISI, Google ScholarN. K. Logothetis, Nature 453, 869 (2008), DOI: 10.1038/nature06976. Crossref, Medline, ISI, Google ScholarN. K. Logothetiset al., Nature 412, 150 (2001), DOI: 10.1038/35084005. Crossref, Medline, ISI, Google ScholarC. Luoet al., Epilepsy Res. 91, 133 (2010), DOI: 10.1016/j.eplepsyres.2010.07.003. Crossref, Medline, ISI, Google ScholarS. Makeiget al., Proc. Natl. Acad. Sci. USA 94, 10979 (1997), DOI: 10.1073/pnas.94.20.10979. Crossref, Medline, ISI, Google ScholarD. Mantiniet al., Neuroimage 44, 265 (2009), DOI: 10.1016/j.neuroimage.2008.08.019. Crossref, Medline, ISI, Google ScholarD. Mantiniet al., Proc. Natl. Acad. Sci. USA 104, 13170 (2007), DOI: 10.1073/pnas.0700668104. Crossref, Medline, ISI, Google ScholarG. Marrelec and H. Benali, Neuroimage 13, 194 (2001), DOI: 10.1016/S1053-8119(01)91537-X. Crossref, Google ScholarE. Martinez-Monteset al., Neuroimage 22, 1023 (2004). Crossref, Medline, ISI, Google ScholarR. A. J. Mastertonet al., Neuroimage 51, 252 (2010), DOI: 10.1016/j.neuroimage.2010.01.109. Crossref, Medline, ISI, Google ScholarJ. Mattout, R. N. Henson and K. J. Friston, Comput. Intell. Neurosci. 67613 (2007). Medline, Google ScholarM. J. McKeownet al., Hum. Brain. Mapp. 6, 160 (1998). Crossref, Medline, ISI, Google ScholarP. Megevandet al., Neuroimage 42, 591 (2008). Crossref, Medline, ISI, Google ScholarF. M. Miezinet al., Neuroimage 11, 735 (2000), DOI: 10.1006/nimg.2000.0568. Crossref, Medline, ISI, Google ScholarM. Moosmannet al., Int. J. Psychophysiol. 67, 212 (2008), DOI: 10.1016/j.ijpsycho.2007.05.016. Crossref, Medline, ISI, Google ScholarF. Mussoet al., Neuroimage 52, 1149 (2010), DOI: 10.1016/j.neuroimage.2010.01.093. Crossref, Medline, ISI, Google Scholar E. Niedermeyer and F. Da Silva , Electroencephalography: Basic Principles, Clinical Applications, and Related Fields ( Lippincott Williams & Wilkins , 2010 ) . Google Scholar P. Nunez , Neocortical Dynamics and Human EEG Rhythms ( Oxford University Press , Oxford , 1995 ) . Google ScholarP. L. Nunez and R. B. Silberstein, Brain Topogr. 13, 79 (2000), DOI: 10.1023/A:1026683200895. Crossref, Medline, ISI, Google ScholarA. B. Patelet al., J. Cereb. Blood Flow Metab. 24, 972 (2004). Crossref, Medline, ISI, Google ScholarC. Phillipset al., Neuroimage 24, 997 (2005), DOI: 10.1016/j.neuroimage.2004.10.030. Crossref, Medline, ISI, Google ScholarC. Phillips, M. D. Rugg and K. J. Fristont, Neuroimage 17, 287 (2002), DOI: 10.1006/nimg.2002.1175. Crossref, Medline, ISI, Google ScholarC. Porcaroet al., Clin. Neurophysiol. 120, 436 (2009), DOI: 10.1016/j.clinph.2008.11.011. Crossref, Medline, ISI, Google ScholarR. R. Poznanski and J. J. Riera, J. Integr. Neurosci. 5, 273 (2006), DOI: 10.1142/S0219635206001173. Link, Google ScholarY. Qin, P. Xu and D. Yao, Clin. Neurophysiol. 121, 1981 (2010), DOI: 10.1016/j.clinph.2010.03.056. Crossref, Medline, ISI, Google ScholarA. Quiros, R. M. Diez and S. P. Wilson, Neuroimage 49, 442 (2010). Crossref, Medline, ISI, Google ScholarJ. Rieraet al., Philos. Trans. R. Soc. Lond B Biol. Sci. 360, 1025 (2005). Crossref, Medline, ISI, Google ScholarJ. J. Riera and A. Sumiyoshi, Curr. Opin. Neurol. 23, 374 (2010). Crossref, Medline, ISI, Google ScholarM. J. Rosaet al., Neuroimage 49, 1496 (2010), DOI: 10.1016/j.neuroimage.2009.09.011. Crossref, Medline, ISI, Google ScholarP. Sajda, M. G. Philiastides and L. C. Parra, IEEE Rev. Biomed. Eng. 2, 97 (2009), DOI: 10.1109/RBME.2009.2034535. Crossref, Medline, ISI, Google ScholarA. Salek-Haddadiet al., Ann. Neurol. 53, 663 (2003), DOI: 10.1002/ana.10586. Crossref, Medline, ISI, Google ScholarJ. R. Satoet al., Neuroimage 50, 1416 (2010), DOI: 10.1016/j.neuroimage.2010.01.075. Crossref, Medline, ISI, Google ScholarR. Scheeringaet al., Int. J. Psychophysiol. 67, 242 (2008), DOI: 10.1016/j.ijpsycho.2007.05.017. Crossref, Medline, ISI, Google ScholarR. Scheeringaet al., Neuron 69, 572 (2011), DOI: 10.1016/j.neuron.2010.11.044. Crossref, Medline, ISI, Google ScholarA. Stancaket al., Neuroimage 25, 8 (2005). Crossref, Medline, ISI, Google ScholarM. C. Stevens, G. D. Pearlson and V. D. Calhoun, Hum. Brain Mapp. 30, 2356 (2009), DOI: 10.1002/hbm.20673. Crossref, Medline, ISI, Google ScholarM. J. Sturzbecheret al., Phys. Med. Biol. 54, 161 (2009), DOI: 10.1088/0031-9155/54/1/011. Crossref, Medline, ISI, Google ScholarJ. Suiet al., Neuroimage 51, 123 (2010), DOI: 10.1016/j.neuroimage.2010.01.069. Crossref, Medline, ISI, Google ScholarJ. Suiet al., Hum. Brain Mapp. 30, 2953 (2009), DOI: 10.1002/hbm.20721. Crossref, Medline, ISI, Google ScholarJ. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme, Germany Stuttgart, 1988) p. 122. Google ScholarJ. X. Taoet al., Epilepsia 46, 669 (2005), DOI: 10.1111/j.1528-1167.2005.11404.x. Crossref, Medline, ISI, Google ScholarN. Trujillo-Barretoet al., Int. J. Bioelectromag. 3, 1 (2001). ISI, Google ScholarL. Tyvaertet al., Hum. Brain. Mapp. 30, 3993 (2009), DOI: 10.1002/hbm.20824. Crossref, Medline, ISI, Google ScholarP. A. Valdes-Sosaet al., Hum. Brain Mapp. 30, 2701 (2009), DOI: 10.1002/hbm.20704. Crossref, Medline, ISI, Google ScholarP. A. Valdes-Sosaet al., Hum. Brain Mapp. 30, 1898 (2009), DOI: 10.1002/hbm.20704. Crossref, Medline, ISI, Google ScholarD. Van De Ville, J. Britz and C. M. Michel, Proc. Natl. Acad. Sci. USA 107, 18179 (2010), DOI: 10.1073/pnas.1007841107. Crossref, Medline, ISI, Google ScholarS. Vulliemozet al., Epilepsia 51, 491 (2010), DOI: 10.1111/j.1528-1167.2009.02342.x. Crossref, Medline, ISI, Google ScholarS. Vulliemozet al., Neuroimage 49, 3219 (2010), DOI: 10.1016/j.neuroimage.2009.11.055. Crossref, Medline, ISI, Google ScholarD. Wipf and S. Nagarajan, Neuroimage 44, 947 (2009), DOI: 10.1016/j.neuroimage.2008.02.059. Crossref, Medline, ISI, Google ScholarD. Yao, Electroencephalogr. Clin. Neurophysiol. 98, 478 (1996). Medline, Google ScholarD. Yao, IEEE Trans. Biomed. Eng. 47, 964 (2000). Medline, ISI, Google ScholarD. Yao, Physiol. Meas. 22, 693 (2001), DOI: 10.1088/0967-3334/22/4/305. Crossref, Medline, ISI, Google ScholarD. Yaoet al., Phys. Med. Biol. 49, 5073 (2004), DOI: 10.1088/0031-9155/49/22/004. Crossref, Medline, ISI, Google Scholar FiguresReferencesRelatedDetailsCited By 29Human activity recognition for analyzing stress behavior based on Bi-LSTMPhataratah Sa-nguannarm, Ermal Elbasani and Jeong-Dong Kim23 Feb 2023 | Technology and Health Care, Vol. 8Coupled support tensor machine classification for multimodal neuroimaging dataPeide Li, Seyyid Emre Sofuoglu, Selin Aviyente and Tapabrata Maiti23 May 2022 | Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 15, No. 6The Added Value of EEG-fMRI in Imaging NeuroscienceRainer Goebel and Fabrizio Esposito1 January 2023EEG–fMRI Information Fusion: Biophysics and Data AnalysisNelson J. Trujillo-Barreto, Jean Daunizeau, Helmut Laufs and Karl J. Friston1 January 2023A Graph-Based Approach for Data Fusion and Segmentation of Multimodal ImagesGeoffrey Iyer, Jocelyn Chanussot and Andrea L. Bertozzi1 May 2021 | IEEE Transactions on Geoscience and Remote Sensing, Vol. 59, No. 5The Locus Coeruleus- Norepinephrine System in Stress and Arousal: Unraveling Historical, Current, and Future PerspectivesJennifer A. Ross and Elisabeth J. Van Bockstaele27 January 2021 | Frontiers in Psychiatry, Vol. 11Snowball ICA: A Model Order Free Independent Component Analysis Strategy for Functional Magnetic Resonance Imaging DataGuoqiang Hu, Abigail B. Waters, Serdar Aslan, Blaise Frederick and Fengyu Cong et al.18 September 2020 | Frontiers in Neuroscience, Vol. 14Bayesian fusion and multimodal DCM for EEG and fMRIHuilin Wei, Amirhossein Jafarian, Peter Zeidman, Vladimir Litvak and Adeel Razi et al.1 May 2020 | NeuroImage, Vol. 211A Comparative Study of Different EEG Reference Choices for Event-Related Potentials Extracted by Independent Component AnalysisLi Dong, Xiaobo Liu, Lingling Zhao, Yongxiu Lai and Diankun Gong et al.11 October 2019 | Frontiers in Neuroscience, Vol. 13Multimodal Co-clustering Analysis of Big Data Based on Matrix and Tensor DecompositionHongya Zhao, Zhenghong Wei and Hong Yan19 July 2019Early brain responses to affective faces: A simultaneous EEG-fMRI studyMiriam Müller-Bardorff, Maximilian Bruchmann, Martin Mothes-Lasch, Pienie Zwitserlood and Insa Schlossmacher et al.1 Sep 2018 | NeuroImage, Vol. 178Neuroscience Information Toolbox: An Open Source Toolbox for EEG–fMRI Multimodal Fusion AnalysisLi Dong, Cheng Luo, Xiaobo Liu, Sisi Jiang and Fali Li et al.24 August 2018 | Frontiers in Neuroinformatics, Vol. 12Multimodal Functional and Structural Brain Connectivity Analysis in Autism: A Preliminary Integrated Approach With EEG, fMRI, and DTIBogdan Alexandru Cociu, Saptarshi Das, Lucia Billeci, Wasifa Jamal and Koushik Maharatna et al.1 Jun 2018 | IEEE Transactions on Cognitive and Developmental Systems, Vol. 10, No. 2Multimodal approaches to functional connectivity in autism spectrum disorders: An integrative perspectiveLisa E. Mash, Maya A. Reiter, Annika C. Linke, Jeanne Townsend and Ralph‐Axel Müller27 December 2017 | Developmental Neurobiology, Vol. 78, No. 5EEG-Informed fMRI: A Review of Data Analysis MethodsRodolfo Abreu, Alberto Leal and Patrícia Figueiredo6 February 2018 | Frontiers in Human Neuroscience, Vol. 12Theta-phase gamma-amplitude coupling as a neurophysiological marker in neuroleptic-naïve schizophreniaGeun Hui Won, Jun Won Kim, Tae Young Choi, Young Sik Lee and Kyung Joon Min et al.1 Feb 2018 | Psychiatry Research, Vol. 260A Comparative Survey on Simultaneous EEG-fMRI MethodologiesSpyridon Manganas and Nikolaos Bourbakis1 Oct 2017A graph-based approach for feature extraction and segmentation of multimodal imagesGeoffrey Iyer, Jocelyn Chanussot and Andrea L. Bertozzi1 Sep 2017Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive functionQian Guo, Tiantong Zhou, Wenjie Li, Li Dong and Suhong Wang et al.29 May 2017 | Brain and Behavior, Vol. 7, No. 7Visual brain activity patterns classification with simultaneous EEG-fMRI: A multimodal approachRana Fayyaz Ahmad, Aamir Saeed Malik, Nidal Kamel, Faruque Reza and Hafeez Ullah Amin et al.28 Jun 2017 | Technology and Health Care, Vol. 25, No. 3Desynchronization of Theta-Phase Gamma-Amplitude Coupling during a Mental Arithmetic Task in Children with Attention Deficit/Hyperactivity DisorderJun Won Kim, Bung-Nyun Kim, Jaewon Lee, Chul Na and Baik Seok Kee et al.1 March 2016 | PLOS ONE, Vol. 11, No. 3Tensor Analysis and Fusion of Multimodal Brain ImagesEsin Karahan, Pedro A. Rojas-Lopez, Maria L. Bringas-Vega, Pedro A. Valdes-Hernandez and Pedro A. Valdes-Sosa1 Sep 2015 | Proceedings of the IEEE, Vol. 103, No. 9Multimodal Data Fusion: An Overview of Methods, Challenges, and ProspectsDana Lahat, Tulay Adali and Christian Jutten1 Sep 2015 | Proceedings of the IEEE, Vol. 103, No. 9Incorporating priors for EEG source imaging and connectivity analysisXu Lei, Taoyu Wu and Pedro A. Valdes-Sosa18 August 2015 | Frontiers in Neuroscience, Vol. 9Fusing Simultaneous EEG and fMRI Using Functional and Anatomical InformationSofie Therese Hansen, Irene Winkler, Lars Kai Hansen, Klaus-Robert Muller and Sven Dahne1 Jun 2015Neuronal oscillations and functional interactions between resting state networksXu Lei, Yulin Wang, Hong Yuan and Dante Mantini25 November 2013 | Human Brain Mapping, Vol. 35, No. 7A review of EEG and MEG for brainnetome researchXin Zhang, Xu Lei, Ting Wu and Tianzi Jiang22 November 2013 | Cognitive Neurodynamics, Vol. 8, No. 2Extraversion is encoded by scale-free dynamics of default mode networkXu Lei, Zhiying Zhao and Hong Chen1 Jul 2013 | NeuroImage, Vol. 74Electromagnetic brain imaging based on standardized resting-state networksXu Lei1 Oct 2012 Recommended Vol. 11, No. 03 Metrics History Received 17 June 2012 Accepted 6 August 2012 Published: 18 September 2012 KeywordsEEGfMRIneuroimagingfusionICABayesianSTEFFPDF download