生物
腺相关病毒
基因组
病毒学
计算生物学
载体(分子生物学)
衣壳
长终端重复
质粒
病毒载体
DNA测序
病毒
基因
基因治疗载体
遗传学
重组DNA
作者
Christine Aurnhammer,Maren Haase,Nadine Muether,Martin A Hausl,Christina Rauschhuber,Ingrid Huber,Hans Nitschko,Ulrich Busch,Andreas Sing,Anja Ehrhardt,Armin Baiker
出处
期刊:Human Gene Therapy Methods
[Mary Ann Liebert]
日期:2012-02-01
卷期号:23 (1): 18-28
被引量:306
标识
DOI:10.1089/hgtb.2011.034
摘要
Viral vectors based on various naturally occurring adeno-associated virus (AAV) serotypes are among the most promising tools in human gene therapy. For the production of recombinant AAV (rAAV) vectors, researchers are focusing predominantly on cross-packaging an artificial AAV genome based on serotype 2 (AAV2) into capsids derived from other serotypes. Within the packaged genome the inverted terminal repeats (ITRs) are the only cis-acting viral elements required for rAAV vector generation and depict the lowest common denominator of all AAV2-derived vector genomes. Up to now, no quantitative PCR (qPCR) for the detection and quantification of AAV2 ITRs could be established because of their extensive secondary hairpin structure formation. Current qPCR-based methods are therefore targeting vector-encoded transgenes or regulatory elements. Herein we establish a molecular biological method that allows accurate and reproducible quantification of AAV2 genomes on the basis of an AAV2 ITR sequence-specific qPCR. Primers and labeled probe are located within the ITR sequence and have been designed to detect both wild-type AAV2 and AAV2-based vectors. This method is suitable for detecting single-stranded DNA derived from AAV2 vector particles and double-stranded DNA derived from vector plasmids. The limit of detection has been determined as 50 ITR sequence copies per reaction, by comparison with a plasmid standard. In conclusion, this method describes the first qPCR system facilitating the detection and quantification of AAV2 ITR sequences. Because this method can be used universally for all AAV2 genome-based vectors, it will significantly simplify rAAV2 vector titrations in the future. Aurnhammer and colleagues have developed a quantitative PCR method for accurate, sensitive, and reproducible quantification of adeno-associated virus type 2 (AAV2) genomes based on amplifying sequences within the inverted terminal repeat sequences. This method can detect both wild-type and recombinant AAV2 vectors, and is suitable for single- and double-stranded DNA derived from either vector particles or plasmids.
科研通智能强力驱动
Strongly Powered by AbleSci AI