Evolutionary multitasking in combinatorial search spaces: A case study in capacitated vehicle routing problem

进化算法 计算机科学 人类多任务处理 车辆路径问题 解码方法 进化计算 数学优化 代表(政治) 背景(考古学) 最优化问题 组合搜索 理论计算机科学 分类 操作员(生物学)
作者
Lei Zhou,Liang Feng,Jinghui Zhong,Yew-Soon Ong,Zexuan Zhu,Edwin H.-M. Sha
出处
期刊:IEEE Symposium Series on Computational Intelligence 卷期号:: 1-8 被引量:17
标识
DOI:10.1109/ssci.2016.7850039
摘要

Multifactorial optimization (MFO) is a new paradigm proposed recently for evolutionary multi-tasking. In contrast to traditional evolutionary optimization approaches, which focus on solving only a single optimization problem at a time, MFO was proposed to solve multiple optimization problems simultaneously. It is contended that the concept of evolutionary multi-tasking provides the scope for implicit knowledge transfer of useful traits across different but related problem domains, thereby enhancing the evolutionary search for problem-solving. With the aim of evolutionary multi-tasking, multifactorial evolutionary algorithm (MFEA) was proposed in [1], and demonstrated efficient multi-tasking performances on several problem domains, including continuous, discrete, and the mixtures of continuous and combinatorial tasks. To solve different problems, the design of unified solution representations and effective problem specific decoding operators are required in MFEA. In particular, the random-key unified representation and the sorting based decoding operator were presented in MFEA for multi-tasking in the context of vehicle routing problem. However, problems such as ineffective solution representation and decoding are existed in this unified representation, which would deteriorate the multi-tasking performance of MFEA. Taking this cue, in this paper, we propose an improved MFEA (P-MFEA) with a permutation based unified representation and a split based decoding operator. To evaluate the efficacy of the proposed P-MFEA, comparison against the traditional single task evolutionary search paradigm on 12 multi-tasking capacitated vehicle routing problems is presented and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助守着她可好采纳,获得10
1秒前
xu发布了新的文献求助10
1秒前
Lxxxx完成签到,获得积分10
2秒前
专注的电脑完成签到,获得积分20
2秒前
2秒前
科研通AI2S应助自由的笑容采纳,获得10
2秒前
2秒前
忧伤的元菱完成签到,获得积分20
3秒前
qhy完成签到,获得积分10
3秒前
高高的大地完成签到,获得积分10
3秒前
喜悦海莲完成签到,获得积分20
3秒前
曲奇吐司完成签到,获得积分10
3秒前
3秒前
4秒前
任性英姑完成签到,获得积分10
4秒前
啦啦啦啦啦完成签到,获得积分20
4秒前
4秒前
杳鸢应助Hao666采纳,获得10
4秒前
5秒前
小开完成签到,获得积分10
5秒前
千与千寻476300完成签到 ,获得积分10
5秒前
5秒前
一直会飞的猪完成签到 ,获得积分10
5秒前
科研通AI40应助hz132511采纳,获得10
6秒前
jy完成签到,获得积分10
6秒前
JS完成签到,获得积分10
6秒前
猪猪hero应助儒雅沛凝采纳,获得10
6秒前
7秒前
7秒前
小猴子完成签到,获得积分20
7秒前
陶醉的斓完成签到,获得积分10
7秒前
雅丽完成签到,获得积分20
7秒前
游羽完成签到,获得积分10
7秒前
科研通AI40应助guan采纳,获得10
7秒前
wangting发布了新的文献求助10
7秒前
8秒前
orange发布了新的文献求助10
8秒前
Yeiiiiii完成签到,获得积分10
8秒前
8秒前
HEIKU应助REN采纳,获得10
8秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471895
求助须知:如何正确求助?哪些是违规求助? 3064811
关于积分的说明 9090840
捐赠科研通 2755581
什么是DOI,文献DOI怎么找? 1512107
邀请新用户注册赠送积分活动 698633
科研通“疑难数据库(出版商)”最低求助积分说明 698537