The monodisperse polystyrene (PS) microspheres were prepared by dispersion polymerization. The rheological properties of shear thickening fluid (STF) based on PS microspheres dispersing in polyethylene glycol with different concentrations were studied through the steady and oscillatory shear at different temperatures, respectively. All suspensions successively present the first shear thinning, the shear thickening, and the second shear thinning. The experimental results indicate that the shear thickening behavior of STF is controlled by the concentration of PS microspheres and temperature, as changed from continuous shear thickening (CST) to discontinuous shear thickening (DST) with increasing solid content or decreasing temperature. The STF is affected by shear rate, temperature, and the viscosity of the dispersed medium, and it is reversible absolutely and presents transient response ability. Both CST and DST behave as dilatancy. The PS microsphere aggregations formed under shear stress may result in the shear thickening in STFs.