Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

计算机科学 双三次插值 卷积神经网络 人工智能 管道(软件) 特征(语言学) 卷积(计算机科学) 计算复杂性理论 插值(计算机图形学) 像素 计算机视觉 图像分辨率 深度学习 增采样 滤波器(信号处理) 模式识别(心理学) 人工神经网络 图像(数学) 算法 线性插值 哲学 语言学 程序设计语言
作者
Wenzhe Shi,José Caballero,Ferenc Huszár,Johannes Totz,Andrew P. Aitken,Rob Bishop,Daniel Rueckert,Zehan Wang
出处
期刊:Computer Vision and Pattern Recognition 卷期号:: 1874-1883 被引量:5914
标识
DOI:10.1109/cvpr.2016.207
摘要

Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DijiaXu应助bbdan采纳,获得10
刚刚
帅气不惜完成签到,获得积分10
1秒前
韶以山发布了新的文献求助10
1秒前
bidibi完成签到,获得积分10
2秒前
Ava应助古药采纳,获得10
2秒前
情怀应助lyh采纳,获得10
2秒前
2秒前
111完成签到,获得积分10
2秒前
3秒前
4秒前
米九完成签到 ,获得积分10
4秒前
等天黑完成签到,获得积分10
4秒前
ding应助Eaven采纳,获得10
5秒前
void科学家完成签到,获得积分10
5秒前
5秒前
在望发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
ZZC10完成签到,获得积分20
6秒前
xiyue完成签到,获得积分10
7秒前
sihui完成签到,获得积分10
7秒前
NexusExplorer应助lll采纳,获得10
7秒前
1223发布了新的文献求助10
7秒前
7秒前
于其言完成签到,获得积分10
8秒前
李爱国应助活力的紫菜采纳,获得10
8秒前
脆脆鲨完成签到,获得积分10
9秒前
9秒前
YXChen发布了新的文献求助10
9秒前
gdh发布了新的文献求助10
9秒前
10秒前
10秒前
完美世界应助mht采纳,获得10
10秒前
pengpeng发布了新的文献求助10
10秒前
jzw完成签到,获得积分20
11秒前
kk发布了新的文献求助10
11秒前
zhangxi发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355