Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

计算机科学 双三次插值 卷积神经网络 人工智能 管道(软件) 特征(语言学) 卷积(计算机科学) 计算复杂性理论 插值(计算机图形学) 像素 计算机视觉 图像分辨率 深度学习 增采样 滤波器(信号处理) 模式识别(心理学) 人工神经网络 图像(数学) 算法 线性插值 哲学 语言学 程序设计语言
作者
Wenzhe Shi,José Caballero,Ferenc Huszár,Johannes Totz,Andrew P. Aitken,Rob Bishop,Daniel Rueckert,Zehan Wang
出处
期刊:Computer Vision and Pattern Recognition 卷期号:: 1874-1883 被引量:5914
标识
DOI:10.1109/cvpr.2016.207
摘要

Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
羊水彤完成签到,获得积分10
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
小乔应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
asdfzxcv应助科研通管家采纳,获得10
1秒前
XXXXY应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
lilili应助科研通管家采纳,获得10
1秒前
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小乔应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
asdfzxcv应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得30
2秒前
2秒前
宁静致远完成签到,获得积分10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得30
2秒前
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
3秒前
完美犀牛完成签到,获得积分10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
852应助科研通管家采纳,获得10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902