Stress accumulation in Ni-rich layered oxide cathodes: Origin, impact, and resolution

材料科学 阴极 电解质 收缩率 压力(语言学) 渗透 能量密度 锂(药物) 化学工程 复合材料 工程物理 化学 物理化学 语言学 哲学 生物化学 电极 工程类 医学 内分泌学
作者
Yuefeng Su,Qiyu Zhang,Lai Chen,Liying Bao,Yun Lu,Shi Chen,Feng Wu
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:65: 236-253 被引量:143
标识
DOI:10.1016/j.jechem.2021.05.048
摘要

LiNixCoyMnzO2 (NCM, x + y + z = 1) is one of the most promising cathode candidates for high energy density lithium-ion batteries (LIBs). Due to the potential in enhancing energy density and cyclic life of LIBs, Ni-rich layered NCM (NCM, x ≥ 0.6) have garnered significant research attention. However, improved specific capacity lead to severer expansion and shrinkage of layered lattice, accelerating the stress generation and accumulation even microcracks formation in NCM materials. The microcracks can promote the electrolyte permeation and decomposition, which can consequently reduce cyclic stabilities. Therefore, it is significant to provide an in-depth insight into the origin and impacts of stress accumulation, and the available modification strategies for the future development of NCM materials. In this review, we will first summarize the origin of stress accumulation in NCM materials. Next, we discuss the impact of stress accumulation. The electrolyte permeation along microcracks can enhance the extent of side reaction at the interface, trigger phase transformation and consequential capacity fading. To cushion the impact of stress accumulation, we will review five main strategies. Finally, concise perspectives to reduce stress accumulation and enhance particle strength in further works will be presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助王i采纳,获得10
刚刚
wanci应助juqiu采纳,获得10
刚刚
美丽的如彤完成签到,获得积分10
1秒前
Orange应助自觉从筠采纳,获得10
1秒前
hp发布了新的文献求助10
2秒前
CodeCraft应助大胆的初瑶采纳,获得10
3秒前
义气的巨人完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
小青椒应助nihao采纳,获得30
5秒前
xingyi完成签到,获得积分10
6秒前
活力的念蕾完成签到,获得积分10
6秒前
yygz0703完成签到 ,获得积分10
7秒前
8秒前
lxz发布了新的文献求助10
8秒前
xxd发布了新的文献求助10
9秒前
甜蜜的曼梅完成签到,获得积分10
9秒前
欣慰的书本完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
归尘发布了新的文献求助10
12秒前
自觉从筠发布了新的文献求助10
13秒前
高高保温杯完成签到,获得积分10
14秒前
今后应助xxd采纳,获得10
15秒前
小白完成签到,获得积分10
15秒前
不开心我的完成签到,获得积分20
16秒前
16秒前
酵母君完成签到,获得积分10
16秒前
中小药完成签到,获得积分10
17秒前
18秒前
21秒前
21秒前
CodeCraft应助酵母君采纳,获得10
22秒前
阳光翩跹完成签到 ,获得积分10
22秒前
22秒前
李li完成签到,获得积分10
24秒前
24秒前
Aypnia发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604302
求助须知:如何正确求助?哪些是违规求助? 4689045
关于积分的说明 14857600
捐赠科研通 4697314
什么是DOI,文献DOI怎么找? 2541233
邀请新用户注册赠送积分活动 1507355
关于科研通互助平台的介绍 1471867