纳滤
膜
盐(化学)
化学工程
分馏
化学
聚酯纤维
色谱法
有机化学
生物化学
工程类
作者
Pengrui Jin,Sara Chergaoui,Junfeng Zheng,A. Volodin,Xin Zhang,Ziyuan Liu,Patricia Luis,Bart Van der Bruggen
标识
DOI:10.1016/j.jhazmat.2021.126716
摘要
With the continuous pressure of water contamination caused by textile industry, loose nanofiltration (LNF) membranes prepared by green materials with an extraordinary water permeability are highly desirable for the recovery and purification of dyes and salts. In this work, low-pressure LNF membranes with ultrahigh permeability were fabricated via one-step interfacial polymerization (IP), in which inexpensive natural carbohydrate-derived sugars with large size and low reactivity were utilized as aqueous monomers to design selective layer. A systematic characterization by chemical analysis and optical microscopy demonstrated that the formed polyester film features not only loosen the structure, but also results in a hydrophilic and negatively charged surface. The optimized sucrose-based membrane (Su0.6/TMC0.1) with an excellent water permeability of 52.4 LMH bar−1 was found to have a high rejection of dyes and a high transmission of salts. In addition, the sugar-based membrane manifested an excellent anti-fouling performance and long-term stability. Furthermore, the non-optimized Gl0.6/TMC0.1 and Ra0.6/TMC0.1 membranes also shown a high water permeability, while maintaining a competitive dye/salt separation performance, which confirmed the universal applicability of the membrane design principle. Therefore, the proposed new strategy for preparing next-generation LNF membranes can contribute towards the textile wastewater treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI