过电位
法拉第效率
电解质
阴极
化学
格式化
阳极
析氧
无机化学
化学工程
材料科学
电化学
电极
催化作用
物理化学
工程类
生物化学
作者
Xinghao Zhou,Rui Liu,Ke Sun,Yikai Chen,Erik Verlage,Sonja A. Francis,Nathan S. Lewis,Chengxiang Xiang
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2016-09-19
卷期号:1 (4): 764-770
被引量:172
标识
DOI:10.1021/acsenergylett.6b00317
摘要
A solar-driven CO2 reduction (CO2R) cell was constructed, consisting of a tandem GaAs/InGaP/TiO2/Ni photoanode in 1.0 M KOH(aq) (pH = 13.7) to facilitate the oxygen-evolution reaction (OER), a Pd/C nanoparticle-coated Ti mesh cathode in 2.8 M KHCO3(aq) (pH = 8.0) to perform the CO2R reaction, and a bipolar membrane to allow for steady-state operation of the catholyte and anolyte at different bulk pH values. At the operational current density of 8.5 mA cm–2, in 2.8 M KHCO3(aq), the cathode exhibited <100 mV overpotential and >94% Faradaic efficiency for the reduction of 1 atm of CO2(g) to formate. The anode exhibited a 320 ± 7 mV overpotential for the OER in 1.0 M KOH(aq), and the bipolar membrane exhibited ∼480 mV voltage loss with minimal product crossovers and >90 and >95% selectivity for protons and hydroxide ions, respectively. The bipolar membrane facilitated coupling between two electrodes and electrolytes, one for the CO2R reaction and one for the OER, that typically operate at mutually different pH values and produced a lower total cell overvoltage than known single-electrolyte CO2R systems while exhibiting ∼10% solar-to-fuels energy-conversion efficiency.
科研通智能强力驱动
Strongly Powered by AbleSci AI