A novel semi-supervised self-training method based on resampling for Twitter fake account identification

计算机科学 重采样 分类器(UML) 人工智能 机器学习 鉴定(生物学) 集合(抽象数据类型) 班级(哲学) 情绪分析 监督学习 标记数据 数据挖掘 人工神经网络 植物 生物 程序设计语言
作者
Ziming Zeng,Tingting Li,Shouqiang Sun,Jingjing Sun,Jie Yin
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:56 (3): 409-428 被引量:9
标识
DOI:10.1108/dta-07-2021-0196
摘要

Purpose Twitter fake accounts refer to bot accounts created by third-party organizations to influence public opinion, commercial propaganda or impersonate others. The effective identification of bot accounts is conducive to accurately judge the disseminated information for the public. However, in actual fake account identification, it is expensive and inefficient to manually label Twitter accounts, and the labeled data are usually unbalanced in classes. To this end, the authors propose a novel framework to solve these problems. Design/methodology/approach In the proposed framework, the authors introduce the concept of semi-supervised self-training learning and apply it to the real Twitter account data set from Kaggle. Specifically, the authors first train the classifier in the initial small amount of labeled account data, then use the trained classifier to automatically label large-scale unlabeled account data. Next, iteratively select high confidence instances from unlabeled data to expand the labeled data. Finally, an expanded Twitter account training set is obtained. It is worth mentioning that the resampling technique is integrated into the self-training process, and the data class is balanced at the initial stage of the self-training iteration. Findings The proposed framework effectively improves labeling efficiency and reduces the influence of class imbalance. It shows excellent identification results on 6 different base classifiers, especially for the initial small-scale labeled Twitter accounts. Originality/value This paper provides novel insights in identifying Twitter fake accounts. First, the authors take the lead in introducing a self-training method to automatically label Twitter accounts from the semi-supervised background. Second, the resampling technique is integrated into the self-training process to effectively reduce the influence of class imbalance on the identification effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌代桃完成签到,获得积分20
2秒前
2秒前
华仔应助开心的白昼采纳,获得10
3秒前
3秒前
4秒前
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
8秒前
所所应助Trust采纳,获得10
8秒前
10秒前
11秒前
12秒前
深情安青应助剑鱼么么哒采纳,获得10
13秒前
里耶熊完成签到,获得积分10
13秒前
lsh完成签到,获得积分10
13秒前
Yingwen发布了新的文献求助10
14秒前
14秒前
liang发布了新的文献求助10
15秒前
16秒前
18秒前
脑洞疼应助阿修罗采纳,获得10
18秒前
发条小样发布了新的文献求助10
19秒前
19秒前
科研通AI2S应助Yingwen采纳,获得10
20秒前
里涵发布了新的文献求助10
20秒前
21秒前
慕青应助纯真如蓉采纳,获得30
22秒前
菡han完成签到 ,获得积分10
23秒前
打打应助如梦如幻91采纳,获得30
23秒前
24秒前
24秒前
不会做科研完成签到,获得积分10
24秒前
25秒前
25秒前
爱静静应助摆渡人采纳,获得10
26秒前
Lucas应助忆茶戏采纳,获得10
26秒前
26秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120178
求助须知:如何正确求助?哪些是违规求助? 2770845
关于积分的说明 7705580
捐赠科研通 2426002
什么是DOI,文献DOI怎么找? 1288363
科研通“疑难数据库(出版商)”最低求助积分说明 620947
版权声明 600010