A novel semi-supervised self-training method based on resampling for Twitter fake account identification

计算机科学 重采样 分类器(UML) 人工智能 机器学习 鉴定(生物学) 集合(抽象数据类型) 班级(哲学) 情绪分析 监督学习 标记数据 数据挖掘 人工神经网络 植物 生物 程序设计语言
作者
Ziming Zeng,Tingting Li,Shouqiang Sun,Jingjing Sun,Jie Yin
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:56 (3): 409-428 被引量:9
标识
DOI:10.1108/dta-07-2021-0196
摘要

Purpose Twitter fake accounts refer to bot accounts created by third-party organizations to influence public opinion, commercial propaganda or impersonate others. The effective identification of bot accounts is conducive to accurately judge the disseminated information for the public. However, in actual fake account identification, it is expensive and inefficient to manually label Twitter accounts, and the labeled data are usually unbalanced in classes. To this end, the authors propose a novel framework to solve these problems. Design/methodology/approach In the proposed framework, the authors introduce the concept of semi-supervised self-training learning and apply it to the real Twitter account data set from Kaggle. Specifically, the authors first train the classifier in the initial small amount of labeled account data, then use the trained classifier to automatically label large-scale unlabeled account data. Next, iteratively select high confidence instances from unlabeled data to expand the labeled data. Finally, an expanded Twitter account training set is obtained. It is worth mentioning that the resampling technique is integrated into the self-training process, and the data class is balanced at the initial stage of the self-training iteration. Findings The proposed framework effectively improves labeling efficiency and reduces the influence of class imbalance. It shows excellent identification results on 6 different base classifiers, especially for the initial small-scale labeled Twitter accounts. Originality/value This paper provides novel insights in identifying Twitter fake accounts. First, the authors take the lead in introducing a self-training method to automatically label Twitter accounts from the semi-supervised background. Second, the resampling technique is integrated into the self-training process to effectively reduce the influence of class imbalance on the identification effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
要减肥金鑫完成签到,获得积分20
1秒前
Inory007发布了新的文献求助10
1秒前
CipherSage应助佳佳采纳,获得10
1秒前
1秒前
weitaiyy完成签到,获得积分10
1秒前
忽晚完成签到 ,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
FF发布了新的文献求助10
3秒前
3秒前
yww发布了新的文献求助10
3秒前
3秒前
wanci应助坚强的严青采纳,获得10
4秒前
6秒前
6秒前
花花发布了新的文献求助10
7秒前
淞33发布了新的文献求助10
7秒前
Kem发布了新的文献求助10
7秒前
稳重诗珊发布了新的文献求助10
8秒前
柳絮旭完成签到 ,获得积分10
8秒前
Parsifal发布了新的文献求助30
9秒前
11秒前
wuyuan完成签到,获得积分10
11秒前
11秒前
FF完成签到,获得积分10
12秒前
依帕尔完成签到,获得积分20
12秒前
mm发布了新的文献求助10
12秒前
HELPMEPLZ发布了新的文献求助10
13秒前
善学以致用应助司佳雨采纳,获得10
13秒前
细雨带风吹完成签到,获得积分10
14秒前
柠觉呢发布了新的文献求助10
15秒前
15秒前
16秒前
shinn发布了新的文献求助10
18秒前
游大侠完成签到,获得积分10
18秒前
xx完成签到,获得积分20
19秒前
量子星尘发布了新的文献求助10
19秒前
Zx_1993应助科研小霖采纳,获得20
20秒前
AN发布了新的文献求助30
21秒前
jia发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594094
求助须知:如何正确求助?哪些是违规求助? 4679802
关于积分的说明 14811596
捐赠科研通 4645803
什么是DOI,文献DOI怎么找? 2534749
邀请新用户注册赠送积分活动 1502769
关于科研通互助平台的介绍 1469452