A novel semi-supervised self-training method based on resampling for Twitter fake account identification

计算机科学 重采样 分类器(UML) 人工智能 机器学习 鉴定(生物学) 集合(抽象数据类型) 班级(哲学) 情绪分析 监督学习 标记数据 数据挖掘 人工神经网络 植物 生物 程序设计语言
作者
Ziming Zeng,Tingting Li,Shouqiang Sun,Jingjing Sun,Jie Yin
出处
期刊:Data technologies and applications [Emerald Publishing Limited]
卷期号:56 (3): 409-428 被引量:9
标识
DOI:10.1108/dta-07-2021-0196
摘要

Purpose Twitter fake accounts refer to bot accounts created by third-party organizations to influence public opinion, commercial propaganda or impersonate others. The effective identification of bot accounts is conducive to accurately judge the disseminated information for the public. However, in actual fake account identification, it is expensive and inefficient to manually label Twitter accounts, and the labeled data are usually unbalanced in classes. To this end, the authors propose a novel framework to solve these problems. Design/methodology/approach In the proposed framework, the authors introduce the concept of semi-supervised self-training learning and apply it to the real Twitter account data set from Kaggle. Specifically, the authors first train the classifier in the initial small amount of labeled account data, then use the trained classifier to automatically label large-scale unlabeled account data. Next, iteratively select high confidence instances from unlabeled data to expand the labeled data. Finally, an expanded Twitter account training set is obtained. It is worth mentioning that the resampling technique is integrated into the self-training process, and the data class is balanced at the initial stage of the self-training iteration. Findings The proposed framework effectively improves labeling efficiency and reduces the influence of class imbalance. It shows excellent identification results on 6 different base classifiers, especially for the initial small-scale labeled Twitter accounts. Originality/value This paper provides novel insights in identifying Twitter fake accounts. First, the authors take the lead in introducing a self-training method to automatically label Twitter accounts from the semi-supervised background. Second, the resampling technique is integrated into the self-training process to effectively reduce the influence of class imbalance on the identification effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu完成签到,获得积分10
2秒前
毛毛发布了新的文献求助10
3秒前
zjq完成签到,获得积分10
5秒前
寒冷河马完成签到,获得积分10
8秒前
公冶笑白发布了新的文献求助10
9秒前
SSS完成签到,获得积分10
11秒前
wpx完成签到,获得积分10
12秒前
小乐完成签到,获得积分10
13秒前
14秒前
长江完成签到 ,获得积分10
14秒前
努力熊熊完成签到,获得积分10
16秒前
16秒前
17秒前
风清扬应助乌禅采纳,获得10
17秒前
科目三应助moonlight采纳,获得10
18秒前
完美世界应助科研通管家采纳,获得10
18秒前
yx_cheng应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
18秒前
loong发布了新的文献求助10
19秒前
Orange应助Xian采纳,获得10
19秒前
橙子完成签到,获得积分10
21秒前
21秒前
顾矜应助loong采纳,获得10
24秒前
潜水读者发布了新的文献求助10
24秒前
25秒前
吃不胖的魔芋丝完成签到 ,获得积分10
26秒前
27秒前
落寞剑成完成签到 ,获得积分10
29秒前
mmmmm发布了新的文献求助10
30秒前
32秒前
34秒前
37秒前
轻松诗霜完成签到 ,获得积分10
37秒前
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989711
求助须知:如何正确求助?哪些是违规求助? 3531864
关于积分的说明 11255235
捐赠科研通 3270505
什么是DOI,文献DOI怎么找? 1804983
邀请新用户注册赠送积分活动 882157
科研通“疑难数据库(出版商)”最低求助积分说明 809176