已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel semi-supervised self-training method based on resampling for Twitter fake account identification

计算机科学 重采样 分类器(UML) 人工智能 机器学习 鉴定(生物学) 集合(抽象数据类型) 班级(哲学) 情绪分析 监督学习 标记数据 数据挖掘 人工神经网络 植物 生物 程序设计语言
作者
Ziming Zeng,Tingting Li,Shouqiang Sun,Jingjing Sun,Jie Yin
出处
期刊:Data technologies and applications [Emerald (MCB UP)]
卷期号:56 (3): 409-428 被引量:9
标识
DOI:10.1108/dta-07-2021-0196
摘要

Purpose Twitter fake accounts refer to bot accounts created by third-party organizations to influence public opinion, commercial propaganda or impersonate others. The effective identification of bot accounts is conducive to accurately judge the disseminated information for the public. However, in actual fake account identification, it is expensive and inefficient to manually label Twitter accounts, and the labeled data are usually unbalanced in classes. To this end, the authors propose a novel framework to solve these problems. Design/methodology/approach In the proposed framework, the authors introduce the concept of semi-supervised self-training learning and apply it to the real Twitter account data set from Kaggle. Specifically, the authors first train the classifier in the initial small amount of labeled account data, then use the trained classifier to automatically label large-scale unlabeled account data. Next, iteratively select high confidence instances from unlabeled data to expand the labeled data. Finally, an expanded Twitter account training set is obtained. It is worth mentioning that the resampling technique is integrated into the self-training process, and the data class is balanced at the initial stage of the self-training iteration. Findings The proposed framework effectively improves labeling efficiency and reduces the influence of class imbalance. It shows excellent identification results on 6 different base classifiers, especially for the initial small-scale labeled Twitter accounts. Originality/value This paper provides novel insights in identifying Twitter fake accounts. First, the authors take the lead in introducing a self-training method to automatically label Twitter accounts from the semi-supervised background. Second, the resampling technique is integrated into the self-training process to effectively reduce the influence of class imbalance on the identification effect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助123采纳,获得20
2秒前
yq完成签到,获得积分10
2秒前
4秒前
半。。完成签到,获得积分20
5秒前
枫泾完成签到,获得积分10
5秒前
半。。发布了新的文献求助10
8秒前
锅包又完成签到 ,获得积分10
8秒前
8秒前
9秒前
lanxinyue发布了新的文献求助10
9秒前
科研通AI6应助不朽采纳,获得10
10秒前
善学以致用应助seventhcat采纳,获得10
11秒前
小灯发布了新的文献求助10
15秒前
chen测给jj的求助进行了留言
17秒前
瓜瓜蛙完成签到,获得积分20
17秒前
琳666发布了新的文献求助30
18秒前
烟花应助红豆子采纳,获得10
18秒前
合适的白筠完成签到,获得积分10
18秒前
19秒前
21秒前
meng发布了新的文献求助20
22秒前
22秒前
25秒前
Ellen发布了新的文献求助10
25秒前
seventhcat发布了新的文献求助10
26秒前
无情的数据线完成签到,获得积分10
26秒前
27秒前
桐桐应助buhuidanhuixue采纳,获得10
27秒前
昏睡小吕发布了新的文献求助10
29秒前
30秒前
李爱国应助在木星采纳,获得10
31秒前
西格玛发布了新的文献求助10
31秒前
Criminology34发布了新的文献求助300
33秒前
33秒前
科研通AI6应助lanxinyue采纳,获得10
33秒前
cheng发布了新的文献求助10
34秒前
破伤风发布了新的文献求助10
35秒前
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644032
求助须知:如何正确求助?哪些是违规求助? 4762682
关于积分的说明 15023283
捐赠科研通 4802257
什么是DOI,文献DOI怎么找? 2567397
邀请新用户注册赠送积分活动 1525099
关于科研通互助平台的介绍 1484620