A systematic survey on deep learning and machine learning approaches of fake news detection in the pre- and post-COVID-19 pandemic

计算机科学 人工智能 深度学习 斯科普斯 误传 危害 机器学习 假新闻 质量(理念) 数据科学 互联网隐私 计算机安全 梅德林 政治学 哲学 认识论 法学
作者
Rajshree Varma,Yugandhara Verma,Priya Vijayvargiya,Prathamesh Churi
出处
期刊:International Journal of Intelligent Computing and Cybernetics [Emerald Publishing Limited]
卷期号:14 (4): 617-646 被引量:49
标识
DOI:10.1108/ijicc-04-2021-0069
摘要

Purpose The rapid advancement of technology in online communication and fingertip access to the Internet has resulted in the expedited dissemination of fake news to engage a global audience at a low cost by news channels, freelance reporters and websites. Amid the coronavirus disease 2019 (COVID-19) pandemic, individuals are inflicted with these false and potentially harmful claims and stories, which may harm the vaccination process. Psychological studies reveal that the human ability to detect deception is only slightly better than chance; therefore, there is a growing need for serious consideration for developing automated strategies to combat fake news that traverses these platforms at an alarming rate. This paper systematically reviews the existing fake news detection technologies by exploring various machine learning and deep learning techniques pre- and post-pandemic, which has never been done before to the best of the authors’ knowledge. Design/methodology/approach The detailed literature review on fake news detection is divided into three major parts. The authors searched papers no later than 2017 on fake news detection approaches on deep learning and machine learning. The papers were initially searched through the Google scholar platform, and they have been scrutinized for quality. The authors kept “Scopus” and “Web of Science” as quality indexing parameters. All research gaps and available databases, data pre-processing, feature extraction techniques and evaluation methods for current fake news detection technologies have been explored, illustrating them using tables, charts and trees. Findings The paper is dissected into two approaches, namely machine learning and deep learning, to present a better understanding and a clear objective. Next, the authors present a viewpoint on which approach is better and future research trends, issues and challenges for researchers, given the relevance and urgency of a detailed and thorough analysis of existing models. This paper also delves into fake new detection during COVID-19, and it can be inferred that research and modeling are shifting toward the use of ensemble approaches. Originality/value The study also identifies several novel automated web-based approaches used by researchers to assess the validity of pandemic news that have proven to be successful, although currently reported accuracy has not yet reached consistent levels in the real world.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Raymond应助阿文文文采纳,获得10
1秒前
zfh1341发布了新的文献求助10
1秒前
深情安青应助小柚采纳,获得10
1秒前
1秒前
乌拉乌拉发布了新的文献求助10
2秒前
哎呀发布了新的文献求助20
3秒前
3秒前
3秒前
甜甜的tiantian完成签到 ,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
1111发布了新的文献求助10
6秒前
YL发布了新的文献求助10
6秒前
李明辉发布了新的文献求助10
6秒前
6秒前
汤圆完成签到,获得积分10
7秒前
小四火完成签到 ,获得积分10
8秒前
8秒前
练得身形似鹤形完成签到 ,获得积分10
9秒前
搜集达人应助idemipere采纳,获得10
9秒前
胖飞飞发布了新的文献求助10
9秒前
细腻依云完成签到,获得积分10
9秒前
琦诺完成签到,获得积分10
10秒前
11秒前
繁荣的友琴完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
柚子发布了新的文献求助10
12秒前
111发布了新的文献求助10
12秒前
甜甜的tiantian关注了科研通微信公众号
13秒前
我来学习学习完成签到,获得积分10
13秒前
司徒不正完成签到 ,获得积分10
13秒前
zfh1341完成签到,获得积分10
13秒前
小米的稻田完成签到,获得积分10
13秒前
羽翼发布了新的文献求助10
13秒前
二巨头发布了新的文献求助10
13秒前
卡萨卡萨完成签到,获得积分10
15秒前
北长雨安完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
鲤鱼奇异果应助岳努努采纳,获得10
16秒前
qqqq082完成签到 ,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663108
求助须知:如何正确求助?哪些是违规求助? 3223859
关于积分的说明 9753675
捐赠科研通 2933709
什么是DOI,文献DOI怎么找? 1606354
邀请新用户注册赠送积分活动 758455
科研通“疑难数据库(出版商)”最低求助积分说明 734792