已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Nonlinear relationship between urban form and street-level PM2.5 and CO based on mobile measurements and gradient boosting decision tree models

环境科学 污染物 空气污染 线性回归 污染 计算机科学 城市规划 决策树 梯度升压 气象学 随机森林 地理 机器学习 Boosting(机器学习) 数据挖掘 土木工程 工程类 生态学 化学 有机化学 生物
作者
Mengyang Liu,Hong Chen,Di Wei,Yunni Wu,Chao Li
出处
期刊:Building and Environment [Elsevier]
卷期号:205: 108265-108265 被引量:57
标识
DOI:10.1016/j.buildenv.2021.108265
摘要

Abstract Exposure to PM2.5 and CO has been proven to be closely related to physical health. Since 2012, they have been added to the pollutant list for national monitoring in Wuhan. However, the fine-scale variation in pollution, especially at the street level, is complex and requires further exploration. In this study, the influence of urban form on the street-level air pollution distribution was comprehensively assessed according to the urban factors, high-resolution meteorological data, PM2.5 and CO concentration data collected via mobile monitoring along roads in Wuhan. Furthermore, potential urban factors, including the land-use and urban form characteristics, were obtained from geographic information system. Both linear regression and gradient boosting decision tree (GBDT) models were developed to explore the relationship between the observed concentrations and the predictor variables. The modeling results demonstrate that the GBDT model, which captured the non-linear relationship, helps to better explain more of the variations in the pollutant concentrations than the linear model. This study provides insights into machine learning models for pollution prediction and demonstrate the important relationship between urban form and street-level pollutants. The results suggest that the urban form of the podium-level porosity can be set higher than 0.7 to promote the ventilation of street-level PM2.5 and CO, building density can be less than 0.35, and the standard deviation of height can be set to ~10 m in central Wuhan to mitigate street-level PM2.5. Thus, quantitatively demonstrating the impact of urban form on the PM2.5 and CO concentrations can help decision-makers with urban planning and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安然发布了新的文献求助10
2秒前
干活君完成签到,获得积分10
3秒前
wxi发布了新的文献求助10
3秒前
科研小白发布了新的文献求助10
3秒前
4秒前
诗诗发布了新的文献求助10
6秒前
乔与乔一完成签到,获得积分10
7秒前
赘婿应助qly采纳,获得10
8秒前
夏紊完成签到 ,获得积分10
8秒前
9秒前
11秒前
小样完成签到,获得积分10
12秒前
华仔应助花火采纳,获得10
14秒前
你好纠结伦完成签到,获得积分10
14秒前
内向的八宝粥完成签到,获得积分10
14秒前
充电宝应助Aloha采纳,获得10
14秒前
谭凯文发布了新的文献求助10
15秒前
16秒前
16秒前
竹纤维完成签到,获得积分10
17秒前
咩咩咩完成签到,获得积分10
18秒前
18秒前
安然发布了新的文献求助10
19秒前
完美世界应助wxi采纳,获得10
19秒前
21秒前
科研通AI5应助霸气安筠采纳,获得10
22秒前
23秒前
zzzzzzl发布了新的文献求助30
23秒前
24秒前
雪白砖家发布了新的文献求助30
25秒前
可爱的函函应助如意无施采纳,获得10
27秒前
29秒前
小二郎应助高会和采纳,获得10
30秒前
康康发布了新的文献求助10
30秒前
30秒前
zzz发布了新的文献求助10
31秒前
菠萝菠萝哒应助koipolaris采纳,获得30
32秒前
优秀的馒头完成签到,获得积分10
33秒前
安然发布了新的文献求助30
35秒前
霸气安筠发布了新的文献求助10
36秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484112
求助须知:如何正确求助?哪些是违规求助? 3073192
关于积分的说明 9129970
捐赠科研通 2764864
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702131
科研通“疑难数据库(出版商)”最低求助积分说明 701057