蛋氨酸
发酵
酶
化学
生物化学
高丝氨酸
氨基酸
群体感应
毒力
基因
作者
Wen-Yuan Zhu,Kun Niu,Peng Liu,Xue Cai,Zhi‐Qiang Liu,Yu‐Guo Zheng
标识
DOI:10.1016/j.jbiosc.2021.07.002
摘要
The biosynthetic pathway of l-methionine in microorganisms was complex and regulated at multiple levels. In this study, a two-step method for l-methionine production combined fermentation and biocatalysis was realized in one pot. The O-succinyl-l-homoserine (OSH) producing strain Escherichia coli W3110(DE3) ΔIJB∗TrcmetL/pTrc-metAfbr-Trc-thrAfbr-yjeH (ΔIJB) was constructed initially. OSH in the fermentation supernatant was then converted to l-methionine in the presence of O-succinyl-l-homoserine sulfhydrylase (OSHS) and sodium methanethiol. The titer of l-methionine could reach 21.1 g/L after 88 h (84 h fermentation and 4 h catalysis) in a two-step method (process 1). In a one-pot two-strain system (process 2), two strains ΔIJB and E. coli BL21(DE3)/pET28b–OSHS–cutinase were co-cultured, and 8.24 g/L l-methionine was obtained. In another one-pot one-strain system (process 3), strain E. coli ΔIJB/pET28b–OSHS–cutinase could co-express OSHS and cutinase during ΔIJB fermentation at the same time, obtaining 13.6 g/L l-methionine in a 5 L fermentor after 84 h. By comparing the three processes for l-methionine production based on the process 1, the simplified process in process 3 provided in this study showed potent in the large-scale production of l-methionine with convenient handling and production efficiency, but further works still need to be carried out to improve the l-methionine production.
科研通智能强力驱动
Strongly Powered by AbleSci AI