Mixed supervision for surface-defect detection: From weakly to fully supervised learning

计算机科学 注释 人工智能 分割 监督学习 任务(项目管理) 机器学习 深度学习 测距 质量(理念) 模式识别(心理学) 人工神经网络 工程类 电信 哲学 系统工程 认识论
作者
Jakob Božič,Domen Tabernik,Danijel Skočaj
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:129: 103459-103459 被引量:145
标识
DOI:10.1016/j.compind.2021.103459
摘要

Deep-learning methods have recently started being employed for addressing surface-defect detection problems in industrial quality control. However, with a large amount of data needed for learning, often requiring high-precision labels, many industrial problems cannot be easily solved, or the cost of the solutions would significantly increase due to the annotation requirements. In this work, we relax heavy requirements of fully supervised learning methods and reduce the need for highly detailed annotations. By proposing a deep-learning architecture, we explore the use of annotations of different details ranging from weak (image-level) labels through mixed supervision to full (pixel-level) annotations on the task of surface-defect detection. The proposed end-to-end architecture is composed of two sub-networks yielding defect segmentation and classification results. The proposed method is evaluated on several datasets for industrial quality inspection: KolektorSDD, DAGM and Severstal Steel Defect. We also present a new dataset termed KolektorSDD2 with over 3000 images containing several types of defects, obtained while addressing a real-world industrial problem. We demonstrate state-of-the-art results on all four datasets. The proposed method outperforms all related approaches in fully supervised settings and also outperforms weakly-supervised methods when only image-level labels are available. We also show that mixed supervision with only a handful of fully annotated samples added to weakly labelled training images can result in performance comparable to the fully supervised model's performance but at a significantly lower annotation cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明乐巧发布了新的文献求助10
1秒前
pluto应助自由的含之采纳,获得10
2秒前
JZ133发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
搜集达人应助dd采纳,获得10
4秒前
受伤无招发布了新的文献求助10
5秒前
orixero应助MXene采纳,获得10
5秒前
酒醉的蝴蝶完成签到 ,获得积分10
5秒前
默默地读文献应助fjljylm采纳,获得10
6秒前
李健应助yyshhcyuwhegy采纳,获得10
6秒前
高高碧完成签到,获得积分10
6秒前
欧阳香彤完成签到,获得积分10
6秒前
李健的小迷弟应助Epiphany采纳,获得10
7秒前
liliy发布了新的文献求助10
8秒前
8秒前
天天快乐应助FSJ采纳,获得10
8秒前
yy完成签到,获得积分10
9秒前
10秒前
君霄完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
12秒前
Leon应助tian采纳,获得10
12秒前
dd完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
受伤无招完成签到,获得积分10
13秒前
13秒前
科研通AI5应助开朗盼山采纳,获得10
13秒前
14秒前
HELAOBAN发布了新的文献求助10
15秒前
Lili完成签到,获得积分20
15秒前
皮皮发布了新的文献求助10
16秒前
April发布了新的文献求助10
16秒前
16秒前
17秒前
guitarist发布了新的文献求助20
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3665610
求助须知:如何正确求助?哪些是违规求助? 3224905
关于积分的说明 9760388
捐赠科研通 2934899
什么是DOI,文献DOI怎么找? 1607211
邀请新用户注册赠送积分活动 759080
科研通“疑难数据库(出版商)”最低求助积分说明 735101