气凝胶
材料科学
化学工程
油滴
纳米技术
乳状液
工程类
作者
Na Tian,Shaohua Wu,Guangting Han,Yuanming Zhang,Qiang Li,Ting Dong
标识
DOI:10.1016/j.jhazmat.2021.127393
摘要
Using tubular kapok fibers (KF) and sodium alginate (SA) as the natural building block, we put forward a novel oriented neurovascular network-like superhydrophobic aerogel with robust dry and wet compression resilience by directional freeze-drying and chemical vapor deposition. In the block, SA forms aligned channel structures providing space for rapid oil transmission, while KF serves as vascular-like capillaries acting as instant “tentacle” to capture the tiny oil droplets in water, facilitating fascinating oil capture efficiency for versatile oil/water separation, The aerogel after dry and wet compression (under a strain of 60%) can recover 96.0% and 97.3% its original, respectively, facilitating stable oil recovery (81.1–89.8%) by squeezing, high separation efficiency (99.04–99.64%) and permeation flux separating oil contaminants from water. A pump-supported experiment shows the aerogel efficiently collecting oil contaminants from the water’s surface and bottom by 11503–25611 L·m−2·h−1. Particularly, the aerogel as robust oil droplets captor facilely achieves isolation of 99.39–99.68% emulsified oils from oil/water emulsions by novel oil trapping mechanism which simply involves exerting kinetic energy on emulsified oils through repeated oscillation, potentially indicating a simple and efficient alternative to membrane-based oily wastewater remediation via filtration.
科研通智能强力驱动
Strongly Powered by AbleSci AI