Use of Peptide Microarrays for Fast and Informative Profiling of Therapeutic Antibody Formulation Conditions

生物制药 计算生物学 单克隆抗体 化学 计算机科学 生物系统 抗体 生物 生物化学 遗传学 免疫学
作者
James Austerberry,John Edwards,Tim Eyes,Jeremy P. Derrick
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:18 (11): 4131-4139
标识
DOI:10.1021/acs.molpharmaceut.1c00543
摘要

Methods to optimize the solution behavior of therapeutic proteins are frequently time-consuming, provide limited information, and often use milligram quantities of material. Here, we present a simple, versatile method that provides valuable information to guide the identification and comparison of formulation conditions for, in principle, any biopharmaceutical drug. The subject protein is incubated with a designed synthetic peptide microarray; the extent of binding to each peptide is dependent on the solution conditions. The array is washed, and the adhesion of the subject protein is detected using a secondary antibody. We exemplify the method using a well-characterized human single-chain Fv and a selection of human monoclonal antibodies. Correlations of peptide adhesion profiles can be used to establish quantitative relationships between different solution conditions, allowing subgrouping into dendrograms. Multidimensional reduction methods, such as t-distributed stochastic neighbor embedding, can be applied to compare how different monoclonals vary in their adhesion properties under different solution conditions. Finally, we screened peptide binding profiles using a selection of monoclonal antibodies for which a range of biophysical measurements were available under specified buffer conditions. We used a neural network method to train the data against aggregation temperature, kD, percentage recovery after incubation at 25 °C, and melting temperature. The results demonstrate that peptide binding profiles can indeed be effectively trained on these indicators of protein stability and self-association in solution. The method opens up multiple possibilities for the application of machine learning methods in therapeutic protein formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小常完成签到 ,获得积分10
1秒前
hola发布了新的文献求助10
1秒前
研量发布了新的文献求助10
2秒前
3秒前
嘿哈哈完成签到,获得积分10
4秒前
英姑应助DueR采纳,获得10
6秒前
qiuling完成签到,获得积分10
6秒前
大熊完成签到,获得积分10
6秒前
curtisness应助张恺琦采纳,获得10
7秒前
7秒前
xh完成签到 ,获得积分10
8秒前
一只特立独行的猪完成签到,获得积分10
8秒前
Lucas应助3565采纳,获得10
9秒前
景熙完成签到,获得积分10
9秒前
zho发布了新的文献求助10
10秒前
彭于晏应助啦啦咔嘞采纳,获得10
11秒前
燕子发布了新的文献求助10
12秒前
13秒前
13秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
无花果应助初步采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
BareBear应助科研通管家采纳,获得10
14秒前
14秒前
思源应助科研通管家采纳,获得10
14秒前
春国应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
dachengzi完成签到 ,获得积分10
15秒前
xionghetu65发布了新的文献求助10
15秒前
宁静致远完成签到,获得积分10
17秒前
17秒前
优雅的沛春完成签到 ,获得积分10
17秒前
善学以致用应助Vicky采纳,获得10
17秒前
zzzkyt发布了新的文献求助10
18秒前
Carpe47发布了新的文献求助10
19秒前
杨欣悦完成签到,获得积分10
20秒前
21秒前
李爱国应助体贴菠萝采纳,获得10
22秒前
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358641
求助须知:如何正确求助?哪些是违规求助? 2981750
关于积分的说明 8700446
捐赠科研通 2663412
什么是DOI,文献DOI怎么找? 1458452
科研通“疑难数据库(出版商)”最低求助积分说明 675116
邀请新用户注册赠送积分活动 666160