已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Use of Peptide Microarrays for Fast and Informative Profiling of Therapeutic Antibody Formulation Conditions

生物制药 计算生物学 单克隆抗体 化学 计算机科学 生物系统 抗体 生物 生物化学 遗传学 免疫学
作者
James Austerberry,John Edwards,Tim Eyes,Jeremy P. Derrick
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:18 (11): 4131-4139
标识
DOI:10.1021/acs.molpharmaceut.1c00543
摘要

Methods to optimize the solution behavior of therapeutic proteins are frequently time-consuming, provide limited information, and often use milligram quantities of material. Here, we present a simple, versatile method that provides valuable information to guide the identification and comparison of formulation conditions for, in principle, any biopharmaceutical drug. The subject protein is incubated with a designed synthetic peptide microarray; the extent of binding to each peptide is dependent on the solution conditions. The array is washed, and the adhesion of the subject protein is detected using a secondary antibody. We exemplify the method using a well-characterized human single-chain Fv and a selection of human monoclonal antibodies. Correlations of peptide adhesion profiles can be used to establish quantitative relationships between different solution conditions, allowing subgrouping into dendrograms. Multidimensional reduction methods, such as t-distributed stochastic neighbor embedding, can be applied to compare how different monoclonals vary in their adhesion properties under different solution conditions. Finally, we screened peptide binding profiles using a selection of monoclonal antibodies for which a range of biophysical measurements were available under specified buffer conditions. We used a neural network method to train the data against aggregation temperature, kD, percentage recovery after incubation at 25 °C, and melting temperature. The results demonstrate that peptide binding profiles can indeed be effectively trained on these indicators of protein stability and self-association in solution. The method opens up multiple possibilities for the application of machine learning methods in therapeutic protein formulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄耀完成签到,获得积分10
刚刚
不吃蛋黄完成签到,获得积分10
1秒前
我是老大应助czz采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
赘婿应助陶醉笑柳采纳,获得30
2秒前
2秒前
xuxiaoyan发布了新的文献求助10
3秒前
zzj发布了新的文献求助10
3秒前
树洞里的刺猬完成签到,获得积分10
4秒前
小屁孩发布了新的文献求助30
4秒前
不吃蛋黄发布了新的文献求助10
4秒前
5秒前
123456完成签到,获得积分10
5秒前
5秒前
疯度完成签到,获得积分10
6秒前
乐观的海发布了新的文献求助30
6秒前
灵巧的十八完成签到,获得积分10
7秒前
白茶完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
浪麻麻发布了新的文献求助10
9秒前
FashionBoy应助zzj采纳,获得10
9秒前
科研通AI6应助Tonia采纳,获得10
10秒前
情怀应助灵巧的十八采纳,获得10
10秒前
CiCi完成签到,获得积分10
11秒前
Trey发布了新的文献求助10
11秒前
11秒前
Renie完成签到 ,获得积分10
12秒前
13秒前
13秒前
希望天下0贩的0应助善逸采纳,获得10
13秒前
13秒前
绝不拖延完成签到,获得积分10
14秒前
14秒前
CiCi发布了新的文献求助10
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733