环己酮
沸石
催化作用
苯酚
选择性
化学
钯
多相催化
纳米颗粒
化学工程
无机化学
有机化学
工程类
作者
Cun Liu,Jinshan Wang,Peng Zhu,Haiou Liu,Xiongfu Zhang
标识
DOI:10.1016/j.cej.2021.132589
摘要
Cyclohexanone, as a significant raw material in the production of nylon 6 and nylon 66, is preferentially synthesized via selective phenol hydrogenation while the key point is to modulate the acidic/basic properties and metal dispersion of the catalytic system. Here, we report the fabrication of [email protected] core–shell catalysts via the in-situ encapsulation of Pd nanoparticles within the L zeolite with a one-dimensional large-pore diffusion system for the selective hydrogenation of phenol to cyclohexanone. The different Pd amounts and acidic/basic properties of the L zeolite catalyst were modulated to study the effects of the microenvironment around the Pd centers in the [email protected] on the catalytic performances of selective phenol hydrogenation. The results show that the basicity of L zeolite greatly favors high selectivity to cyclohexanone. In contrast, modulating the microenvironment to weak or strong acid states can result in the dehydration product forming on the acid sites or even the suppression of phenol hydrogenation. The conversion of phenol increases from 14.0% to 99.9% and meanwhile the selectivity of cyclohexanone ranges from 67.5% to 93.8%. In the optimum condition, the obtained [email protected] catalyst can demonstrate excellent catalytic performance with the phenol conversion of 99.9% and the cyclohexanone selectivity of around 93.8%. Our work presents a promising tactic to effectively control the target reaction pathway by means of maneuvering the microenvironment in the proximity of metal nanoparticles.
科研通智能强力驱动
Strongly Powered by AbleSci AI