On-Chip HV Bootstrap Gate Driving for GaN Compatible Power Circuits Operating Above 10 MHz

功率(物理) 符号 计算机科学 算法 数学 算术 物理 量子力学
作者
Min Kyu Song,Lei Chen,Joseph Sankman,D. Brian
出处
期刊:IEEE Journal of Solid-state Circuits [Institute of Electrical and Electronics Engineers]
卷期号:57 (3): 942-952 被引量:8
标识
DOI:10.1109/jssc.2021.3112507
摘要

With superb device characteristics, gallium nitride (GaN) power transistors facilitate fast and efficient power conversion and delivery in modern power circuits. To take full advantage of these devices, high switching frequency ( $f_{\mathrm {SW}}$ ) operation is highly desirable. However, the lack of GaN compatible high-speed, efficient, and reliable gate drivers has been a formidable design hindrance. In this article, we address three critical design challenges faced in GaN power gate driving, namely bootstrap (BST) level-shifting, switching slew rate (SR) control, and active deadtime $t_{\mathrm {dead}}$ control. We first propose a BST dynamic level-shifting technique to enable sub-nanosecond $t_{\mathrm {delay}}$ at high $f_{\mathrm {SW}}$ . Meanwhile, a dual-SR switching technique is introduced to retain both low switching power and noise. Compared with traditional constant $t_{\mathrm {dead}}$ controls, the $t_{\mathrm {dead}}s$ in this design are regulated actively for high efficiency. To validate these techniques, a four-phase GaN-based switching power converter was designed and implemented on a $0.35~\mu \text{m}$ high-voltage (HV) BCD process. At a $f_{\mathrm {SW}}$ of 20 MHz and a $V_{\mathrm {IN}}$ of 20 V, it delivers a maximum power of 8.4 W and a peak efficiency of 84.9%. The gate drivers are fully integrated including all BST capacitors and active BST switches. It achieves regulated rise and fall $t_{\mathrm {dead}}s$ of 3.2 and 4.7 ns, respectively, for a load range from 50 mA to 1.2 A. The gate switching rise time $t_{R}$ is reduced to 1 ns with a maximum switching SR of 48 V/ns. The converter employs a HV synchronized hysteretic control, which works with the proposed gate drivers seamlessly to demonstrate a dynamic voltage scaling (DVS) Vo up- and down-tracking speeds of $0.33~\mu \text{s}$ /V and $0.47~\mu \text{s}$ /V, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文剑武书生完成签到,获得积分10
1秒前
科研通AI5应助无限鞅采纳,获得10
1秒前
1秒前
852应助木棉采纳,获得10
1秒前
2秒前
卓哥完成签到,获得积分10
3秒前
4秒前
Agan发布了新的文献求助10
4秒前
4秒前
5秒前
morlison发布了新的文献求助10
5秒前
科研通AI5应助金色年华采纳,获得10
7秒前
充电宝应助kh453采纳,获得10
7秒前
正经俠发布了新的文献求助10
7秒前
一衣发布了新的文献求助20
8秒前
可爱的函函应助药学牛马采纳,获得10
8秒前
XM发布了新的文献求助10
8秒前
专注之双完成签到,获得积分10
9秒前
SciGPT应助十一采纳,获得10
9秒前
9秒前
A1234完成签到,获得积分10
10秒前
刘铭晨发布了新的文献求助10
11秒前
孙冉冉完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
大模型应助hhzz采纳,获得10
16秒前
一只智慧喵完成签到,获得积分10
16秒前
科目三应助Fundamental采纳,获得10
17秒前
17秒前
miumiuka发布了新的文献求助10
18秒前
greenPASS666发布了新的文献求助10
19秒前
xuanxuan发布了新的文献求助10
19秒前
zfy发布了新的文献求助10
21秒前
21秒前
21秒前
Maor完成签到,获得积分10
21秒前
白菜发布了新的文献求助10
22秒前
22秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808