AMPA受体
内化
脱磷
扁桃形结构
NMDA受体
消光(光学矿物学)
心理学
谷氨酸受体
焦虑
神经科学
受体
内科学
磷酸化
化学
细胞生物学
生物
医学
精神科
磷酸酶
矿物学
作者
Shuming An,Jiayue Wang,Xuliang Zhang,Yanhong Duan,Yi-Qiong Xu,Junyan Lv,Dasheng Wang,Huan Zhang,Gal Richter‐Levin,Oded Klavir,Buwei Yu,Xiaohua Cao
标识
DOI:10.1016/j.ynstr.2021.100359
摘要
Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals. However, its molecular and cellular mechanisms remain largely unexplored. Here, we found PTSD susceptible mice exhibited significant up-regulation of alpha-Ca2+/calmodulin-dependent kinase II (αCaMKII) in the lateral amygdala (LA). Consistently, increasing αCaMKII in the LA not only caused PTSD-like behaviors such as impaired fear extinction and anxiety-like behaviors, but also attenuated N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) at thalamo-lateral amygdala (T-LA) synapses, and reduced GluA1-Ser845/Ser831 dephosphorylation and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) internalization. Suppressing the elevated αCaMKII to normal levels completely rescued both PTSD-like behaviors and the impairments in LTD, GluA1-Ser845/Ser831 dephosphorylation, and AMPAR internalization. Intriguingly, deficits in GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization were detected not only after impaired fear extinction, but also after attenuated LTD. Our results suggest that αCaMKII in the LA may be a potential molecular determinant of PTSD. We further demonstrate for the first time that GluA1-Ser845/Ser831 dephosphorylation and AMPAR internalization are molecular links between fear extinction and LTD.
科研通智能强力驱动
Strongly Powered by AbleSci AI