An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease

医学 心脏病 胎儿超声心动图 置信区间 指南 超声波 心脏病学 产前诊断 胎儿 胎心 内科学 放射科 怀孕 病理 生物 遗传学
作者
Rima Arnaout,Lara Curran,Yili Zhao,Jami C. Levine,Erin Chinn,Anita J. Moon‐Grady
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (5): 882-891 被引量:156
标识
DOI:10.1038/s41591-021-01342-5
摘要

Congenital heart disease (CHD) is the most common birth defect. Fetal screening ultrasound provides five views of the heart that together can detect 90% of complex CHD, but in practice, sensitivity is as low as 30%. Here, using 107,823 images from 1,326 retrospective echocardiograms and screening ultrasounds from 18- to 24-week fetuses, we trained an ensemble of neural networks to identify recommended cardiac views and distinguish between normal hearts and complex CHD. We also used segmentation models to calculate standard fetal cardiothoracic measurements. In an internal test set of 4,108 fetal surveys (0.9% CHD, >4.4 million images), the model achieved an area under the curve (AUC) of 0.99, 95% sensitivity (95% confidence interval (CI), 84–99%), 96% specificity (95% CI, 95–97%) and 100% negative predictive value in distinguishing normal from abnormal hearts. Model sensitivity was comparable to that of clinicians and remained robust on outside-hospital and lower-quality images. The model’s decisions were based on clinically relevant features. Cardiac measurements correlated with reported measures for normal and abnormal hearts. Applied to guideline-recommended imaging, ensemble learning models could significantly improve detection of fetal CHD, a critical and global diagnostic challenge. Deep learning can facilitate identification of congenital heart disease from fetal ultrasound screening, a diagnosis that in clinical practice is often missed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqh完成签到,获得积分20
刚刚
刚刚
嘎嘎顺利发布了新的文献求助10
刚刚
按住心动完成签到,获得积分10
1秒前
星辰大海应助屁王采纳,获得10
1秒前
Owen应助彬彬采纳,获得10
2秒前
2秒前
Jasen完成签到,获得积分10
2秒前
轻轻地呼吸完成签到,获得积分10
2秒前
2秒前
明天更好发布了新的文献求助10
2秒前
3秒前
猪血糕yu完成签到,获得积分10
3秒前
通~发布了新的文献求助10
3秒前
4秒前
科研小垃圾完成签到,获得积分10
4秒前
5秒前
生动的煎蛋完成签到,获得积分10
5秒前
NexusExplorer应助marinemiao采纳,获得10
5秒前
CXS完成签到,获得积分10
6秒前
6秒前
6秒前
小郭完成签到,获得积分10
6秒前
6秒前
123发布了新的文献求助10
7秒前
NN123完成签到 ,获得积分10
7秒前
FFFFFFF应助艺玲采纳,获得10
8秒前
袁访天发布了新的文献求助10
8秒前
辇道增七完成签到,获得积分10
8秒前
8秒前
幽默的太阳完成签到 ,获得积分10
9秒前
9秒前
Nininni完成签到,获得积分10
9秒前
Tao完成签到,获得积分10
9秒前
9秒前
zqh发布了新的文献求助10
9秒前
9秒前
虫虫发布了新的文献求助10
10秒前
无情豪英完成签到 ,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740