表观遗传学
DNA甲基化
生物
组蛋白甲基化
体育锻炼的表观遗传学
细胞生物学
组蛋白
转录因子
遗传学
小眼畸形相关转录因子
表观遗传学
基因表达
基因
作者
Shihang Zhou,Hongliang Zeng,Jinhua Huang,Li Lei,Xiaoliang Tong,Si Li,Ying Zhou,Haoran Guo,Manal Khan,Liping Luo,Rong Xiao,Jing Chen,Qinghai Zeng
标识
DOI:10.1016/j.arr.2021.101349
摘要
Melanogenesis is a complex process in which melanin is synthesized in melanocytes and transported to keratinocytes, which involves multiple genes and signaling pathways. Epigenetics refers to the potential genetic changes that affect gene expression without involving changes in the original sequence of DNA nucleotides. DNA methylation regulates the expression of key genes such as tyrosinase (TYR), tyrosinase-related protein 1 (TYRP1), dopachrome tautomerase (DCT) and microphthalmia-associated transcription factor (MITF), as well as paracrine factors such as stem cell factor (SCF) and endothelin-1 (ET-1) in melanogenesis. Potential DNA methylation sites are present in the genes of melanogenesis-related signaling pathways such as "Wnt", "PI3K/Akt/CREB" and "MAPK". H3K27 acetylation is abundant in melanogenesis-related genes. Both the upstream activation and downstream regulation of MITF depend on histone acetyltransferase CBP/p300, and pH-induced H3K27 acetylation may be the amplifying mechanism of MITF's effect. HDAC1 and HDAC10 catalyze histone deacetylation of melanogenesis-related gene promoters. Chromatin remodelers SWI/SNF complex and ISWI complex use the energy of ATP hydrolysis to rearrange nucleosomes, while their active subunits BRG1, BRM and BPTF, act as activators and cofactors of MITF. MicroRNAs (miRNAs) can directly target a large number of melanogenesis-related genes, while long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) regulate melanogenesis in a variety of ways. Interactions exist among the epigenetic mechanisms of melanogenesis. For example, the methyl CpG binding domain protein 2 (MeCP2) links DNA methylation, histone deacetylation, and histone methylation. Epigenetic-based therapy provides novel opportunities for treating dermatoses that are caused by pigmentation disturbances. This review summarizes the epigenetic regulation mechanisms of melanogenesis, and examines the pathogenesis and treatment of epigenetics in pigmentation disorders.
科研通智能强力驱动
Strongly Powered by AbleSci AI