Precise Approximation of Convolutional Neural Networks for Homomorphically Encrypted Data

计算机科学 联营 同态加密 明文 卷积神经网络 极小极大 加密 多项式的 深度学习 人工智能 算法 理论计算机科学 数学 数学优化 操作系统 数学分析
作者
Jung-Hyun Lee,Eunsang Lee,Joon-Woo Lee,Yongjune Kim,Young Sik Kim,Jong‐Seon No
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 62062-62076 被引量:15
标识
DOI:10.1109/access.2023.3287564
摘要

Homomorphic encryption (HE) is one of the representative solutions to privacy-preserving machine learning (PPML) classification enabling the server to classify private data of clients while guaranteeing privacy. This work focuses on PPML using word-wise fully homomorphic encryption (FHE). In order to implement deep learning on word-wise HE, the ReLU and max-pooling functions should be approximated by polynomials for homomorphic operations. Most of the previous studies focus on HE-friendly networks, which approximate the ReLU and max-pooling functions using low-degree polynomials. However, this approximation cannot support deeper neural networks due to large approximation errors in general and can classify only relatively small datasets. Thus, we propose a precise polynomial approximation technique, a composition of minimax approximate polynomials of low degrees for the ReLU and max-pooling functions. If we replace the ReLU and max-pooling functions with the proposed approximate polynomials, standard deep learning models such as ResNet and VGGNet can still be used without further modification for PPML on FHE. Even pre-trained parameters can be used without retraining, which makes the proposed method more practical. We approximate the ReLU and max-pooling functions in the ResNet-152 using the composition of minimax approximate polynomials of degrees 15, 27, and 29. Then, we succeed in classifying the plaintext ImageNet dataset with 77.52% accuracy, which is very close to the original model accuracy of 78.31%. Also, we obtain an accuracy of 87.90% for classifying the encrypted CIFAR-10 dataset in the ResNet-20 without any additional training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助fighting采纳,获得10
2秒前
5秒前
飘着的鬼发布了新的文献求助10
9秒前
甜美无剑应助科研通管家采纳,获得30
10秒前
cherlie应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
11秒前
cherlie应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
8R60d8应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
十二应助科研通管家采纳,获得10
11秒前
十二应助科研通管家采纳,获得10
11秒前
11秒前
温暖的涵易完成签到,获得积分0
11秒前
11秒前
11秒前
小木完成签到,获得积分10
12秒前
叶光大完成签到 ,获得积分10
13秒前
13秒前
大宝慧发布了新的文献求助10
13秒前
成就迎梅完成签到,获得积分10
13秒前
单于思雁完成签到,获得积分10
14秒前
YYYCCCCC完成签到,获得积分10
14秒前
20秒前
猪猪hero发布了新的文献求助10
20秒前
失眠锦程完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
大宝慧完成签到,获得积分10
22秒前
全力以赴先生完成签到,获得积分10
23秒前
26秒前
27秒前
29秒前
是玥玥啊发布了新的文献求助10
29秒前
进退须臾完成签到,获得积分10
33秒前
Steven发布了新的文献求助20
34秒前
ycool发布了新的文献求助10
35秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952508
求助须知:如何正确求助?哪些是违规求助? 3497869
关于积分的说明 11089256
捐赠科研通 3228427
什么是DOI,文献DOI怎么找? 1784869
邀请新用户注册赠送积分活动 868943
科研通“疑难数据库(出版商)”最低求助积分说明 801309