亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions

计算机科学 卷积神经网络 期限(时间) 均方误差 人工智能 深度学习 能量(信号处理) 循环神经网络 机器学习 预测建模 人工神经网络 短时记忆 数据挖掘 统计 量子力学 数学 物理
作者
Guannan Li,Xiaowei Zhao,Cheng Fan,Xi Fang,Fan Li,Yubei Wu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:43: 103182-103182 被引量:19
标识
DOI:10.1016/j.jobe.2021.103182
摘要

Given the need for timely and reliable management of power distribution systems and smart grids, it is of great significance to develop a quick and accurate short-term building energy prediction model. Currently, the deep learning method, i.e., long short-term memory network (LSTM), is widely used for short-term building energy prediction. To further enhance the prediction accuracy and reduce the computational cost, previous studies have investigated improved LSTM models with modified structures such as LSTM-Attention, and LSTM-CNN. However, there is a lack of systematic assessment of these LSTM-based building energy forecast models considering the influencing factors such as model parameters tuning, modelling data volume, building type, climate features. Further, there is a lack of research on the combination of LSTM together with Attention and convolutional neural network (CNN) modifications. To address these research gaps, comparative evaluations of pure LSTM and five improved LSTM models (i.e., LSTM-CNN, CNN-LSTM, LSTM-Attention, CNN-Attention-LSTM, and LSTM-Attention-CNN) were performed in this study. These models were validated using the open-source data sets from the Building Data Genome Project 2. Comparative studies were conducted on 60 randomly selected buildings from four different climate zones consisting of six different building types; evaluations were performed using either one-year or two-year energy consumption data. Further, the prediction performance of these models after parameter tuning was assessed in terms of prediction accuracy and computational time. The results demonstrated that, after parameter optimisation, LSTM models exhibited reduced root mean square error (RMSE) by 6.2%–29.2%. When only one-year data were used for modeling, CNN-LSTM decreased the average RMSEs of LSTM by as much as 2.9%. When two-year data were used for modelling, LSTM-ATT exhibited more stable prediction performance than the other models and decreased the average RMSE of LSTM by 5.6% at most.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助霜鸣采纳,获得10
1秒前
2秒前
隐形曼青应助伽拉采纳,获得10
3秒前
hhw完成签到,获得积分10
3秒前
咕噜噜发布了新的文献求助10
5秒前
8秒前
9秒前
研友_qZ6V1Z发布了新的文献求助10
10秒前
涨秋池发布了新的文献求助10
11秒前
燕子完成签到 ,获得积分10
11秒前
11秒前
nicenice发布了新的文献求助10
13秒前
13秒前
yx_cheng应助linkman采纳,获得10
16秒前
17秒前
Bowman发布了新的文献求助30
17秒前
Anthonywll完成签到 ,获得积分10
26秒前
壮观的海豚完成签到 ,获得积分10
29秒前
慕青应助喂喂采纳,获得10
30秒前
zx完成签到 ,获得积分10
32秒前
guozao发布了新的文献求助10
34秒前
咖啡龙完成签到,获得积分20
34秒前
yx_cheng应助linkman采纳,获得10
36秒前
39秒前
ET完成签到,获得积分10
40秒前
完美世界应助towerman采纳,获得10
46秒前
hi_traffic完成签到,获得积分10
51秒前
51秒前
HXY完成签到,获得积分10
53秒前
54秒前
54秒前
57秒前
领导范儿应助linkman采纳,获得30
59秒前
eric888应助guozao采纳,获得150
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
towerman完成签到,获得积分10
1分钟前
towerman发布了新的文献求助10
1分钟前
Bizibili完成签到,获得积分10
1分钟前
英俊的铭应助linkman采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990012
求助须知:如何正确求助?哪些是违规求助? 3532049
关于积分的说明 11256153
捐赠科研通 3270925
什么是DOI,文献DOI怎么找? 1805123
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809216