亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions

计算机科学 卷积神经网络 期限(时间) 均方误差 人工智能 深度学习 能量(信号处理) 循环神经网络 机器学习 预测建模 人工神经网络 短时记忆 数据挖掘 统计 量子力学 数学 物理
作者
Guannan Li,Xiaowei Zhao,Cheng Fan,Xi Fang,Fan Li,Yubei Wu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:43: 103182-103182 被引量:19
标识
DOI:10.1016/j.jobe.2021.103182
摘要

Given the need for timely and reliable management of power distribution systems and smart grids, it is of great significance to develop a quick and accurate short-term building energy prediction model. Currently, the deep learning method, i.e., long short-term memory network (LSTM), is widely used for short-term building energy prediction. To further enhance the prediction accuracy and reduce the computational cost, previous studies have investigated improved LSTM models with modified structures such as LSTM-Attention, and LSTM-CNN. However, there is a lack of systematic assessment of these LSTM-based building energy forecast models considering the influencing factors such as model parameters tuning, modelling data volume, building type, climate features. Further, there is a lack of research on the combination of LSTM together with Attention and convolutional neural network (CNN) modifications. To address these research gaps, comparative evaluations of pure LSTM and five improved LSTM models (i.e., LSTM-CNN, CNN-LSTM, LSTM-Attention, CNN-Attention-LSTM, and LSTM-Attention-CNN) were performed in this study. These models were validated using the open-source data sets from the Building Data Genome Project 2. Comparative studies were conducted on 60 randomly selected buildings from four different climate zones consisting of six different building types; evaluations were performed using either one-year or two-year energy consumption data. Further, the prediction performance of these models after parameter tuning was assessed in terms of prediction accuracy and computational time. The results demonstrated that, after parameter optimisation, LSTM models exhibited reduced root mean square error (RMSE) by 6.2%–29.2%. When only one-year data were used for modeling, CNN-LSTM decreased the average RMSEs of LSTM by as much as 2.9%. When two-year data were used for modelling, LSTM-ATT exhibited more stable prediction performance than the other models and decreased the average RMSE of LSTM by 5.6% at most.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助orangel采纳,获得10
刚刚
2秒前
金沐栋发布了新的文献求助10
5秒前
23秒前
Rachel发布了新的文献求助10
28秒前
44秒前
魏欣娜发布了新的文献求助10
49秒前
orixero应助契合采纳,获得20
50秒前
56秒前
Lucas应助潇洒荧荧采纳,获得10
59秒前
契合发布了新的文献求助20
1分钟前
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
CodeCraft应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
隐形曼青应助踏实白柏采纳,获得10
1分钟前
研友_VZG7GZ应助契合采纳,获得20
1分钟前
大个应助淡然的念珍采纳,获得10
1分钟前
夹心就是嘉欣呀完成签到,获得积分10
1分钟前
1分钟前
今后应助夹心就是嘉欣呀采纳,获得10
1分钟前
华西招生版完成签到,获得积分10
2分钟前
契合发布了新的文献求助20
2分钟前
慕青应助Huzhu采纳,获得10
2分钟前
2分钟前
风华正茂完成签到,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
群山完成签到 ,获得积分10
2分钟前
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
科目三应助badabadaba采纳,获得30
2分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
NI完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476330
求助须知:如何正确求助?哪些是违规求助? 4577995
关于积分的说明 14363306
捐赠科研通 4505871
什么是DOI,文献DOI怎么找? 2468931
邀请新用户注册赠送积分活动 1456508
关于科研通互助平台的介绍 1430177