亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions

计算机科学 卷积神经网络 期限(时间) 均方误差 人工智能 深度学习 能量(信号处理) 循环神经网络 机器学习 预测建模 人工神经网络 短时记忆 数据挖掘 统计 量子力学 数学 物理
作者
Guannan Li,Xiaowei Zhao,Cheng Fan,Xi Fang,Fan Li,Yubei Wu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:43: 103182-103182 被引量:19
标识
DOI:10.1016/j.jobe.2021.103182
摘要

Given the need for timely and reliable management of power distribution systems and smart grids, it is of great significance to develop a quick and accurate short-term building energy prediction model. Currently, the deep learning method, i.e., long short-term memory network (LSTM), is widely used for short-term building energy prediction. To further enhance the prediction accuracy and reduce the computational cost, previous studies have investigated improved LSTM models with modified structures such as LSTM-Attention, and LSTM-CNN. However, there is a lack of systematic assessment of these LSTM-based building energy forecast models considering the influencing factors such as model parameters tuning, modelling data volume, building type, climate features. Further, there is a lack of research on the combination of LSTM together with Attention and convolutional neural network (CNN) modifications. To address these research gaps, comparative evaluations of pure LSTM and five improved LSTM models (i.e., LSTM-CNN, CNN-LSTM, LSTM-Attention, CNN-Attention-LSTM, and LSTM-Attention-CNN) were performed in this study. These models were validated using the open-source data sets from the Building Data Genome Project 2. Comparative studies were conducted on 60 randomly selected buildings from four different climate zones consisting of six different building types; evaluations were performed using either one-year or two-year energy consumption data. Further, the prediction performance of these models after parameter tuning was assessed in terms of prediction accuracy and computational time. The results demonstrated that, after parameter optimisation, LSTM models exhibited reduced root mean square error (RMSE) by 6.2%–29.2%. When only one-year data were used for modeling, CNN-LSTM decreased the average RMSEs of LSTM by as much as 2.9%. When two-year data were used for modelling, LSTM-ATT exhibited more stable prediction performance than the other models and decreased the average RMSE of LSTM by 5.6% at most.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助可靠的公爵熊采纳,获得10
2秒前
Owen应助积极雪糕采纳,获得10
3秒前
4秒前
丘比特应助keshi采纳,获得10
8秒前
完美世界应助多读点文献采纳,获得10
15秒前
19秒前
25秒前
36秒前
00发布了新的文献求助10
42秒前
科目三应助科研通管家采纳,获得10
48秒前
li完成签到 ,获得积分10
50秒前
51秒前
56秒前
小蘑菇应助自信的兔子采纳,获得10
58秒前
乐乐应助消毒水采纳,获得10
1分钟前
小闫同学完成签到 ,获得积分10
1分钟前
酷波er应助可靠的公爵熊采纳,获得10
1分钟前
1分钟前
1分钟前
科研通AI6应助乐乐采纳,获得10
1分钟前
1分钟前
keshi发布了新的文献求助10
1分钟前
干羞花发布了新的文献求助10
1分钟前
1分钟前
1分钟前
脑洞疼应助缥缈的涵菡采纳,获得10
1分钟前
干羞花完成签到,获得积分0
2分钟前
小罗发布了新的文献求助10
2分钟前
OvO_4577完成签到,获得积分10
2分钟前
2分钟前
消毒水发布了新的文献求助10
2分钟前
mark707完成签到,获得积分10
2分钟前
2分钟前
非理性人群完成签到 ,获得积分10
2分钟前
2分钟前
大胆的时光完成签到 ,获得积分10
2分钟前
周冯雪完成签到 ,获得积分10
2分钟前
2分钟前
情怀应助重重采纳,获得10
2分钟前
Lucas应助可靠的公爵熊采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622197
求助须知:如何正确求助?哪些是违规求助? 4707114
关于积分的说明 14938744
捐赠科研通 4768724
什么是DOI,文献DOI怎么找? 2552192
邀请新用户注册赠送积分活动 1514325
关于科研通互助平台的介绍 1475028