亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions

计算机科学 卷积神经网络 期限(时间) 均方误差 人工智能 深度学习 能量(信号处理) 循环神经网络 机器学习 预测建模 人工神经网络 短时记忆 数据挖掘 统计 量子力学 数学 物理
作者
Guannan Li,Xiaowei Zhao,Cheng Fan,Xi Fang,Fan Li,Yubei Wu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:43: 103182-103182 被引量:19
标识
DOI:10.1016/j.jobe.2021.103182
摘要

Given the need for timely and reliable management of power distribution systems and smart grids, it is of great significance to develop a quick and accurate short-term building energy prediction model. Currently, the deep learning method, i.e., long short-term memory network (LSTM), is widely used for short-term building energy prediction. To further enhance the prediction accuracy and reduce the computational cost, previous studies have investigated improved LSTM models with modified structures such as LSTM-Attention, and LSTM-CNN. However, there is a lack of systematic assessment of these LSTM-based building energy forecast models considering the influencing factors such as model parameters tuning, modelling data volume, building type, climate features. Further, there is a lack of research on the combination of LSTM together with Attention and convolutional neural network (CNN) modifications. To address these research gaps, comparative evaluations of pure LSTM and five improved LSTM models (i.e., LSTM-CNN, CNN-LSTM, LSTM-Attention, CNN-Attention-LSTM, and LSTM-Attention-CNN) were performed in this study. These models were validated using the open-source data sets from the Building Data Genome Project 2. Comparative studies were conducted on 60 randomly selected buildings from four different climate zones consisting of six different building types; evaluations were performed using either one-year or two-year energy consumption data. Further, the prediction performance of these models after parameter tuning was assessed in terms of prediction accuracy and computational time. The results demonstrated that, after parameter optimisation, LSTM models exhibited reduced root mean square error (RMSE) by 6.2%–29.2%. When only one-year data were used for modeling, CNN-LSTM decreased the average RMSEs of LSTM by as much as 2.9%. When two-year data were used for modelling, LSTM-ATT exhibited more stable prediction performance than the other models and decreased the average RMSE of LSTM by 5.6% at most.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Lucas应助科研通管家采纳,获得10
29秒前
Broadway Zhang完成签到,获得积分10
42秒前
44秒前
彭于晏应助原子采纳,获得10
48秒前
58秒前
chenjy202303发布了新的文献求助30
1分钟前
原子发布了新的文献求助10
1分钟前
1分钟前
坦率灵槐应助原子采纳,获得10
1分钟前
完美世界应助Criminology34采纳,获得100
1分钟前
原子完成签到,获得积分10
1分钟前
溆玉碎兰笑完成签到 ,获得积分10
1分钟前
sunialnd完成签到,获得积分10
1分钟前
思源应助lawang采纳,获得10
1分钟前
隐形曼青应助lawang采纳,获得10
1分钟前
李健的小迷弟应助lawang采纳,获得10
1分钟前
思源应助lawang采纳,获得10
1分钟前
研友_VZG7GZ应助lawang采纳,获得10
1分钟前
Lucas应助lawang采纳,获得10
1分钟前
今后应助chenjy202303采纳,获得20
2分钟前
2分钟前
Criminology34发布了新的文献求助100
2分钟前
所所应助lawang采纳,获得10
2分钟前
华仔应助lawang采纳,获得10
2分钟前
情怀应助lawang采纳,获得10
2分钟前
无花果应助lawang采纳,获得10
2分钟前
酷波er应助lawang采纳,获得10
2分钟前
今后应助lawang采纳,获得10
2分钟前
丘比特应助lawang采纳,获得10
2分钟前
Jasper应助lawang采纳,获得10
2分钟前
善学以致用应助lawang采纳,获得10
2分钟前
英俊的铭应助lawang采纳,获得10
2分钟前
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
chenjy202303发布了新的文献求助20
2分钟前
Endymion发布了新的文献求助10
2分钟前
今后应助Endymion采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957