Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions

计算机科学 卷积神经网络 期限(时间) 均方误差 人工智能 深度学习 能量(信号处理) 循环神经网络 机器学习 预测建模 人工神经网络 短时记忆 数据挖掘 统计 量子力学 数学 物理
作者
Guannan Li,Xiaowei Zhao,Cheng Fan,Xi Fang,Fan Li,Yubei Wu
出处
期刊:Journal of building engineering [Elsevier BV]
卷期号:43: 103182-103182 被引量:19
标识
DOI:10.1016/j.jobe.2021.103182
摘要

Given the need for timely and reliable management of power distribution systems and smart grids, it is of great significance to develop a quick and accurate short-term building energy prediction model. Currently, the deep learning method, i.e., long short-term memory network (LSTM), is widely used for short-term building energy prediction. To further enhance the prediction accuracy and reduce the computational cost, previous studies have investigated improved LSTM models with modified structures such as LSTM-Attention, and LSTM-CNN. However, there is a lack of systematic assessment of these LSTM-based building energy forecast models considering the influencing factors such as model parameters tuning, modelling data volume, building type, climate features. Further, there is a lack of research on the combination of LSTM together with Attention and convolutional neural network (CNN) modifications. To address these research gaps, comparative evaluations of pure LSTM and five improved LSTM models (i.e., LSTM-CNN, CNN-LSTM, LSTM-Attention, CNN-Attention-LSTM, and LSTM-Attention-CNN) were performed in this study. These models were validated using the open-source data sets from the Building Data Genome Project 2. Comparative studies were conducted on 60 randomly selected buildings from four different climate zones consisting of six different building types; evaluations were performed using either one-year or two-year energy consumption data. Further, the prediction performance of these models after parameter tuning was assessed in terms of prediction accuracy and computational time. The results demonstrated that, after parameter optimisation, LSTM models exhibited reduced root mean square error (RMSE) by 6.2%–29.2%. When only one-year data were used for modeling, CNN-LSTM decreased the average RMSEs of LSTM by as much as 2.9%. When two-year data were used for modelling, LSTM-ATT exhibited more stable prediction performance than the other models and decreased the average RMSE of LSTM by 5.6% at most.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助wish采纳,获得10
刚刚
Afaq发布了新的文献求助10
刚刚
果粒多发布了新的文献求助10
1秒前
1秒前
无辜如容完成签到,获得积分10
2秒前
2秒前
5秒前
6秒前
ASA发布了新的文献求助30
6秒前
7秒前
情怀应助tingting9采纳,获得10
8秒前
FXQ123_范发布了新的文献求助10
8秒前
sun完成签到,获得积分20
8秒前
10秒前
彭于晏应助wldsd采纳,获得30
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
高一淼发布了新的文献求助10
12秒前
明道若昧完成签到,获得积分10
12秒前
上官若男应助mk采纳,获得10
13秒前
wish完成签到,获得积分10
15秒前
wish发布了新的文献求助10
17秒前
稍等一下完成签到 ,获得积分10
18秒前
momo发布了新的文献求助10
18秒前
20秒前
20秒前
liang白开完成签到,获得积分10
22秒前
mk发布了新的文献求助10
24秒前
丘比特应助嗯嗯采纳,获得10
24秒前
乐乐应助abin采纳,获得10
26秒前
史念薇发布了新的文献求助10
26秒前
26秒前
Hello应助Afaq采纳,获得10
29秒前
Tourist完成签到 ,获得积分10
31秒前
王路飞发布了新的文献求助10
31秒前
34秒前
35秒前
36秒前
西南楚留香完成签到,获得积分10
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136