Assessment of long short-term memory and its modifications for enhanced short-term building energy predictions

计算机科学 卷积神经网络 期限(时间) 均方误差 人工智能 深度学习 能量(信号处理) 循环神经网络 机器学习 预测建模 人工神经网络 短时记忆 数据挖掘 统计 量子力学 数学 物理
作者
Guannan Li,Xiaowei Zhao,Cheng Fan,Xi Fang,Fan Li,Yubei Wu
出处
期刊:Journal of building engineering [Elsevier]
卷期号:43: 103182-103182 被引量:19
标识
DOI:10.1016/j.jobe.2021.103182
摘要

Given the need for timely and reliable management of power distribution systems and smart grids, it is of great significance to develop a quick and accurate short-term building energy prediction model. Currently, the deep learning method, i.e., long short-term memory network (LSTM), is widely used for short-term building energy prediction. To further enhance the prediction accuracy and reduce the computational cost, previous studies have investigated improved LSTM models with modified structures such as LSTM-Attention, and LSTM-CNN. However, there is a lack of systematic assessment of these LSTM-based building energy forecast models considering the influencing factors such as model parameters tuning, modelling data volume, building type, climate features. Further, there is a lack of research on the combination of LSTM together with Attention and convolutional neural network (CNN) modifications. To address these research gaps, comparative evaluations of pure LSTM and five improved LSTM models (i.e., LSTM-CNN, CNN-LSTM, LSTM-Attention, CNN-Attention-LSTM, and LSTM-Attention-CNN) were performed in this study. These models were validated using the open-source data sets from the Building Data Genome Project 2. Comparative studies were conducted on 60 randomly selected buildings from four different climate zones consisting of six different building types; evaluations were performed using either one-year or two-year energy consumption data. Further, the prediction performance of these models after parameter tuning was assessed in terms of prediction accuracy and computational time. The results demonstrated that, after parameter optimisation, LSTM models exhibited reduced root mean square error (RMSE) by 6.2%–29.2%. When only one-year data were used for modeling, CNN-LSTM decreased the average RMSEs of LSTM by as much as 2.9%. When two-year data were used for modelling, LSTM-ATT exhibited more stable prediction performance than the other models and decreased the average RMSE of LSTM by 5.6% at most.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LK完成签到,获得积分10
1秒前
3秒前
kwi完成签到,获得积分20
4秒前
nana湘发布了新的文献求助10
4秒前
麦麦发布了新的文献求助10
5秒前
墨墨的小蝴蝶完成签到,获得积分10
5秒前
123完成签到,获得积分10
6秒前
小蘑菇应助沉默南露采纳,获得10
6秒前
6秒前
科研通AI6应助Wqian采纳,获得10
6秒前
三好学生发布了新的文献求助10
6秒前
7秒前
华仔应助lin采纳,获得10
8秒前
Yuan完成签到,获得积分10
8秒前
hql发布了新的文献求助10
8秒前
诗酒完成签到,获得积分20
8秒前
桐桐应助流星砸地鼠采纳,获得10
8秒前
顾矜应助xlz采纳,获得10
9秒前
chun123完成签到,获得积分10
9秒前
10秒前
10秒前
李李05发布了新的文献求助10
11秒前
雨夜聆风完成签到,获得积分10
11秒前
DA发布了新的文献求助10
12秒前
悠悠发布了新的文献求助10
13秒前
wen发布了新的文献求助10
13秒前
江果有点甜完成签到,获得积分10
14秒前
敏感钥匙完成签到 ,获得积分10
14秒前
早日毕业发布了新的文献求助10
16秒前
顾矜应助三好学生采纳,获得10
16秒前
16秒前
FashionBoy应助1234采纳,获得10
18秒前
隐形曼青应助chun123采纳,获得10
18秒前
mawenxing完成签到,获得积分10
19秒前
19秒前
活力小熊猫完成签到 ,获得积分10
19秒前
andrele应助heisebeileimao采纳,获得10
20秒前
PINGAN完成签到,获得积分10
21秒前
21秒前
扶南发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589341
求助须知:如何正确求助?哪些是违规求助? 4674104
关于积分的说明 14791759
捐赠科研通 4628240
什么是DOI,文献DOI怎么找? 2532262
邀请新用户注册赠送积分活动 1500881
关于科研通互助平台的介绍 1468438