地质学
地震学
地震动
光谱加速度
加速度
地震灾害
大地测量学
震级(天文学)
流离失所(心理学)
振幅
运动(物理)
峰值地面加速度
水平和垂直
工作(物理)
计算机科学
物理
量子力学
经典力学
热力学
人工智能
心理学
心理治疗师
天文
作者
Fadel Ramadan,Chiara Smerzini,Giovanni Lanzano,Francesca Pacor
摘要
Abstract This work presents a novel empirical Ground Motion prediction Model (GMM) for vertical‐to‐horizontal (VH) response spectral amplitudes up to 10 s, peak ground acceleration and velocity for shallow crustal earthquakes in Italy. Being calibrated on the most up‐to‐date strong motion dataset for Italian crustal earthquakes (ITA18), the model is consistent with the ITA18 GMM for the horizontal ground motion. This property makes the model useful in probabilistic seismic hazard assessment for Italy to derive compatible vertical and horizontal response spectra. To account for the increase of VH ratios in the proximity of the seismic source, an adjustment term is introduced to improve the prediction capability of the model in near‐source conditions, relying on the worldwide NEar‐Source Strong motion dataset (NESS). The proposed model uses a simple functional form restricted to a limited number of predictor variables, namely, magnitude, source‐to‐site distance, focal mechanism, and site effects, and the variability associated with both VH and V models is provided.
科研通智能强力驱动
Strongly Powered by AbleSci AI