Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos)

医学 假阳性悖论 前瞻性队列研究 放射科 试验预测值 彩色内窥镜 内窥镜 内窥镜检查 癌症 胃肠病学 人工智能 内科学 结肠镜检查 结直肠癌 计算机科学
作者
Lianlian Wu,Ming Xu,Xiaoda Jiang,Xinqi He,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Peihua Lv,Bin Lu,Mingwen Guo,Manling Huang,Liping Ye,Lei Shen,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (2): 269-280.e6 被引量:63
标识
DOI:10.1016/j.gie.2021.09.017
摘要

White-light endoscopy (WLE) is the most pivotal tool to detect gastric cancer in an early stage. However, the skill among endoscopists varies greatly. Here, we aim to develop a deep learning-based system named ENDOANGEL-LD (lesion detection) to assist in detecting all focal gastric lesions and predicting neoplasms by WLE.Endoscopic images were retrospectively obtained from Renmin Hospital of Wuhan University (RHWU) for the development, validation, and internal test of the system. Additional external tests were conducted in 5 other hospitals to evaluate the robustness. Stored videos from RHWU were used for assessing and comparing the performance of ENDOANGEL-LD with that of experts. Prospective consecutive patients undergoing upper endoscopy were enrolled from May 6, 2021 to August 2, 2021 in RHWU to assess clinical practice applicability.Over 10,000 patients undergoing upper endoscopy were enrolled in this study. The sensitivities were 96.9% and 95.6% for detecting gastric lesions and 92.9% and 91.7% for diagnosing neoplasms in internal and external patients, respectively. In 100 videos, ENDOANGEL-LD achieved superior sensitivity and negative predictive value for detecting gastric neoplasms from that of experts (100% vs 85.5% ± 3.4% [P = .003] and 100% vs 86.4% ± 2.8% [P = .002], respectively). In 2010 prospective consecutive patients, ENDOANGEL-LD achieved a sensitivity of 92.8% for detecting gastric lesions with 3.04 ± 3.04 false positives per gastroscopy and a sensitivity of 91.8% and specificity of 92.4% for diagnosing neoplasms.Our results show that ENDOANGEL-LD has great potential for assisting endoscopists in screening gastric lesions and suspicious neoplasms in clinical work. (Clinical trial registration number: ChiCTR2100045963.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
团结友爱发布了新的文献求助10
1秒前
盐烤香鱼完成签到,获得积分10
1秒前
1秒前
Orange应助Alex采纳,获得10
2秒前
nnnn应助wuchun采纳,获得20
2秒前
2秒前
2秒前
2秒前
今后应助等待的凌晴采纳,获得30
3秒前
毛彬发布了新的文献求助10
3秒前
酷酷的起眸完成签到,获得积分20
3秒前
NexusExplorer应助hooke采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
科研通AI6应助口天吴采纳,获得10
5秒前
5秒前
5秒前
壮观晓博发布了新的文献求助10
6秒前
泰想成功发布了新的文献求助10
6秒前
yahaha完成签到,获得积分10
6秒前
6秒前
6秒前
1592611829完成签到,获得积分10
6秒前
TOMORROW完成签到,获得积分20
7秒前
7秒前
7秒前
7秒前
今后应助yoyo采纳,获得10
7秒前
落后的哈密瓜完成签到,获得积分10
7秒前
8秒前
FashionBoy应助倪13采纳,获得10
8秒前
mht发布了新的文献求助10
9秒前
深情安青应助luoyulin采纳,获得10
9秒前
滴滴答答发布了新的文献求助10
9秒前
honey完成签到 ,获得积分10
10秒前
Fiee完成签到,获得积分10
10秒前
ummmmm完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791