Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos)

医学 假阳性悖论 前瞻性队列研究 放射科 试验预测值 彩色内窥镜 内窥镜 内窥镜检查 癌症 胃肠病学 人工智能 内科学 结肠镜检查 结直肠癌 计算机科学
作者
Lianlian Wu,Ming Xu,Xiaoda Jiang,Xinqi He,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Peihua Lv,Bin Lu,Mingwen Guo,Manling Huang,Liping Ye,Lei Shen,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (2): 269-280.e6 被引量:63
标识
DOI:10.1016/j.gie.2021.09.017
摘要

White-light endoscopy (WLE) is the most pivotal tool to detect gastric cancer in an early stage. However, the skill among endoscopists varies greatly. Here, we aim to develop a deep learning-based system named ENDOANGEL-LD (lesion detection) to assist in detecting all focal gastric lesions and predicting neoplasms by WLE.Endoscopic images were retrospectively obtained from Renmin Hospital of Wuhan University (RHWU) for the development, validation, and internal test of the system. Additional external tests were conducted in 5 other hospitals to evaluate the robustness. Stored videos from RHWU were used for assessing and comparing the performance of ENDOANGEL-LD with that of experts. Prospective consecutive patients undergoing upper endoscopy were enrolled from May 6, 2021 to August 2, 2021 in RHWU to assess clinical practice applicability.Over 10,000 patients undergoing upper endoscopy were enrolled in this study. The sensitivities were 96.9% and 95.6% for detecting gastric lesions and 92.9% and 91.7% for diagnosing neoplasms in internal and external patients, respectively. In 100 videos, ENDOANGEL-LD achieved superior sensitivity and negative predictive value for detecting gastric neoplasms from that of experts (100% vs 85.5% ± 3.4% [P = .003] and 100% vs 86.4% ± 2.8% [P = .002], respectively). In 2010 prospective consecutive patients, ENDOANGEL-LD achieved a sensitivity of 92.8% for detecting gastric lesions with 3.04 ± 3.04 false positives per gastroscopy and a sensitivity of 91.8% and specificity of 92.4% for diagnosing neoplasms.Our results show that ENDOANGEL-LD has great potential for assisting endoscopists in screening gastric lesions and suspicious neoplasms in clinical work. (Clinical trial registration number: ChiCTR2100045963.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cl完成签到 ,获得积分10
1秒前
1秒前
fengwanru完成签到,获得积分10
1秒前
意寒完成签到,获得积分10
2秒前
吴先生完成签到,获得积分10
2秒前
种花兔完成签到,获得积分10
2秒前
打打应助田攀采纳,获得10
2秒前
2秒前
华仔应助lyy采纳,获得10
2秒前
3秒前
拘留所完成签到,获得积分10
3秒前
amanda举报Dxy-TOFA求助涉嫌违规
4秒前
旦皋发布了新的文献求助50
4秒前
马tttt完成签到,获得积分10
4秒前
七面东风完成签到,获得积分10
4秒前
纯情的采柳完成签到 ,获得积分10
4秒前
小马甲应助肆_采纳,获得10
4秒前
科研汪完成签到,获得积分10
4秒前
温暖妙彤完成签到 ,获得积分10
4秒前
5秒前
zuoyueyue应助jianyulv采纳,获得50
5秒前
冉冉完成签到 ,获得积分0
5秒前
JudasW完成签到,获得积分10
5秒前
迷人的鲂完成签到,获得积分10
5秒前
5秒前
遥远星辰完成签到,获得积分10
5秒前
宇文书翠发布了新的文献求助10
6秒前
由由完成签到,获得积分20
6秒前
Vicki完成签到,获得积分0
6秒前
lll发布了新的文献求助10
6秒前
16发布了新的文献求助10
6秒前
宋真玉完成签到 ,获得积分10
6秒前
wanglejia完成签到,获得积分10
6秒前
喵喵完成签到,获得积分10
8秒前
Tara完成签到 ,获得积分10
8秒前
科研通AI6应助高帮白袜采纳,获得10
8秒前
Lucas应助ctttt采纳,获得10
9秒前
药学小团子完成签到,获得积分10
9秒前
蜘蛛道理完成签到 ,获得积分10
9秒前
打打应助tejing1158采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665264
求助须知:如何正确求助?哪些是违规求助? 4875562
关于积分的说明 15112548
捐赠科研通 4824343
什么是DOI,文献DOI怎么找? 2582710
邀请新用户注册赠送积分活动 1536677
关于科研通互助平台的介绍 1495284