Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos)

医学 假阳性悖论 前瞻性队列研究 放射科 试验预测值 彩色内窥镜 内窥镜 内窥镜检查 癌症 胃肠病学 人工智能 内科学 结肠镜检查 结直肠癌 计算机科学
作者
Lianlian Wu,Ming Xu,Xiaoda Jiang,Xinqi He,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Peihua Lv,Bin Lu,Mingwen Guo,Manling Huang,Liping Ye,Lei Shen,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (2): 269-280.e6 被引量:63
标识
DOI:10.1016/j.gie.2021.09.017
摘要

White-light endoscopy (WLE) is the most pivotal tool to detect gastric cancer in an early stage. However, the skill among endoscopists varies greatly. Here, we aim to develop a deep learning-based system named ENDOANGEL-LD (lesion detection) to assist in detecting all focal gastric lesions and predicting neoplasms by WLE.Endoscopic images were retrospectively obtained from Renmin Hospital of Wuhan University (RHWU) for the development, validation, and internal test of the system. Additional external tests were conducted in 5 other hospitals to evaluate the robustness. Stored videos from RHWU were used for assessing and comparing the performance of ENDOANGEL-LD with that of experts. Prospective consecutive patients undergoing upper endoscopy were enrolled from May 6, 2021 to August 2, 2021 in RHWU to assess clinical practice applicability.Over 10,000 patients undergoing upper endoscopy were enrolled in this study. The sensitivities were 96.9% and 95.6% for detecting gastric lesions and 92.9% and 91.7% for diagnosing neoplasms in internal and external patients, respectively. In 100 videos, ENDOANGEL-LD achieved superior sensitivity and negative predictive value for detecting gastric neoplasms from that of experts (100% vs 85.5% ± 3.4% [P = .003] and 100% vs 86.4% ± 2.8% [P = .002], respectively). In 2010 prospective consecutive patients, ENDOANGEL-LD achieved a sensitivity of 92.8% for detecting gastric lesions with 3.04 ± 3.04 false positives per gastroscopy and a sensitivity of 91.8% and specificity of 92.4% for diagnosing neoplasms.Our results show that ENDOANGEL-LD has great potential for assisting endoscopists in screening gastric lesions and suspicious neoplasms in clinical work. (Clinical trial registration number: ChiCTR2100045963.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23发布了新的文献求助20
4秒前
Xzx1995完成签到 ,获得积分10
8秒前
NiNi完成签到 ,获得积分10
11秒前
shlw完成签到,获得积分10
17秒前
蓝色花生豆完成签到,获得积分0
21秒前
22秒前
zhangxasq完成签到,获得积分10
26秒前
科研狗发布了新的文献求助10
28秒前
PHI完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
38秒前
李先生完成签到 ,获得积分10
39秒前
上官若男应助dingtao采纳,获得30
40秒前
46秒前
47秒前
49秒前
熊泰山完成签到 ,获得积分10
50秒前
韧迹完成签到 ,获得积分0
50秒前
dingtao发布了新的文献求助30
50秒前
来自三百完成签到 ,获得积分10
53秒前
粗犷的灵松完成签到 ,获得积分10
55秒前
无情航空发布了新的文献求助10
55秒前
天天完成签到 ,获得积分10
56秒前
量子星尘发布了新的文献求助10
59秒前
初心路完成签到 ,获得积分10
1分钟前
合适靖儿完成签到 ,获得积分10
1分钟前
到底是谁还在做牛马完成签到 ,获得积分10
1分钟前
轻松寄风发布了新的文献求助10
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
快乐谷蓝完成签到,获得积分10
1分钟前
chen完成签到 ,获得积分10
1分钟前
li完成签到 ,获得积分10
1分钟前
余慵慵完成签到 ,获得积分10
1分钟前
顾矜应助dingtao采纳,获得10
1分钟前
wanghao完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助轻松寄风采纳,获得10
1分钟前
落雪完成签到 ,获得积分10
1分钟前
李爱国应助陈秋采纳,获得20
1分钟前
xiliyusheng完成签到 ,获得积分10
1分钟前
dingtao发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599921
求助须知:如何正确求助?哪些是违规求助? 4685672
关于积分的说明 14838805
捐赠科研通 4673629
什么是DOI,文献DOI怎么找? 2538411
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1471013