亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos)

医学 假阳性悖论 前瞻性队列研究 放射科 试验预测值 彩色内窥镜 内窥镜 内窥镜检查 癌症 胃肠病学 人工智能 内科学 结肠镜检查 结直肠癌 计算机科学
作者
Lianlian Wu,Ming Xu,Xiaoda Jiang,Xinqi He,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Peihua Lv,Bin Lu,Mingwen Guo,Manling Huang,Liping Ye,Lei Shen,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (2): 269-280.e6 被引量:63
标识
DOI:10.1016/j.gie.2021.09.017
摘要

White-light endoscopy (WLE) is the most pivotal tool to detect gastric cancer in an early stage. However, the skill among endoscopists varies greatly. Here, we aim to develop a deep learning-based system named ENDOANGEL-LD (lesion detection) to assist in detecting all focal gastric lesions and predicting neoplasms by WLE.Endoscopic images were retrospectively obtained from Renmin Hospital of Wuhan University (RHWU) for the development, validation, and internal test of the system. Additional external tests were conducted in 5 other hospitals to evaluate the robustness. Stored videos from RHWU were used for assessing and comparing the performance of ENDOANGEL-LD with that of experts. Prospective consecutive patients undergoing upper endoscopy were enrolled from May 6, 2021 to August 2, 2021 in RHWU to assess clinical practice applicability.Over 10,000 patients undergoing upper endoscopy were enrolled in this study. The sensitivities were 96.9% and 95.6% for detecting gastric lesions and 92.9% and 91.7% for diagnosing neoplasms in internal and external patients, respectively. In 100 videos, ENDOANGEL-LD achieved superior sensitivity and negative predictive value for detecting gastric neoplasms from that of experts (100% vs 85.5% ± 3.4% [P = .003] and 100% vs 86.4% ± 2.8% [P = .002], respectively). In 2010 prospective consecutive patients, ENDOANGEL-LD achieved a sensitivity of 92.8% for detecting gastric lesions with 3.04 ± 3.04 false positives per gastroscopy and a sensitivity of 91.8% and specificity of 92.4% for diagnosing neoplasms.Our results show that ENDOANGEL-LD has great potential for assisting endoscopists in screening gastric lesions and suspicious neoplasms in clinical work. (Clinical trial registration number: ChiCTR2100045963.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情的楷瑞完成签到 ,获得积分10
9秒前
10秒前
科研帽发布了新的文献求助10
15秒前
思源应助nazhang采纳,获得10
15秒前
殷楷霖发布了新的文献求助10
16秒前
16秒前
18秒前
Allan完成签到 ,获得积分10
22秒前
隐形曼青应助举人烧烤采纳,获得10
22秒前
33秒前
34秒前
饱满的书萱完成签到,获得积分10
35秒前
nazhang发布了新的文献求助10
37秒前
青柠发布了新的文献求助10
39秒前
46秒前
小小斌发布了新的文献求助200
50秒前
58秒前
58秒前
科研通AI6应助殷楷霖采纳,获得10
58秒前
kangkang发布了新的文献求助10
59秒前
搜集达人应助xwc采纳,获得30
1分钟前
共享精神应助xwc采纳,获得10
1分钟前
科研通AI6应助xwc采纳,获得10
1分钟前
完美世界应助xwc采纳,获得10
1分钟前
科研通AI6应助xwc采纳,获得10
1分钟前
端庄千青发布了新的文献求助10
1分钟前
deansy发布了新的文献求助10
1分钟前
1分钟前
斯文败类应助端庄千青采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
拿铁小笼包完成签到,获得积分10
1分钟前
1分钟前
细心的雨竹完成签到,获得积分10
1分钟前
1分钟前
嘻嘻完成签到,获得积分10
1分钟前
青柠发布了新的文献求助10
1分钟前
充电宝应助fzy采纳,获得10
1分钟前
1分钟前
吱吱吱吱发布了新的文献求助10
1分钟前
清秀芝麻完成签到 ,获得积分10
1分钟前
高分求助中
From Victimization to Aggression 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644428
求助须知:如何正确求助?哪些是违规求助? 4764178
关于积分的说明 15025100
捐赠科研通 4802856
什么是DOI,文献DOI怎么找? 2567622
邀请新用户注册赠送积分活动 1525334
关于科研通互助平台的介绍 1484790