已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos)

医学 假阳性悖论 前瞻性队列研究 放射科 试验预测值 彩色内窥镜 内窥镜 内窥镜检查 癌症 胃肠病学 人工智能 内科学 结肠镜检查 结直肠癌 计算机科学
作者
Lianlian Wu,Ming Xu,Xiaoda Jiang,Xinqi He,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Peihua Lv,Bin Lu,Mingwen Guo,Manling Huang,Liping Ye,Lei Shen,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier]
卷期号:95 (2): 269-280.e6 被引量:63
标识
DOI:10.1016/j.gie.2021.09.017
摘要

White-light endoscopy (WLE) is the most pivotal tool to detect gastric cancer in an early stage. However, the skill among endoscopists varies greatly. Here, we aim to develop a deep learning-based system named ENDOANGEL-LD (lesion detection) to assist in detecting all focal gastric lesions and predicting neoplasms by WLE.Endoscopic images were retrospectively obtained from Renmin Hospital of Wuhan University (RHWU) for the development, validation, and internal test of the system. Additional external tests were conducted in 5 other hospitals to evaluate the robustness. Stored videos from RHWU were used for assessing and comparing the performance of ENDOANGEL-LD with that of experts. Prospective consecutive patients undergoing upper endoscopy were enrolled from May 6, 2021 to August 2, 2021 in RHWU to assess clinical practice applicability.Over 10,000 patients undergoing upper endoscopy were enrolled in this study. The sensitivities were 96.9% and 95.6% for detecting gastric lesions and 92.9% and 91.7% for diagnosing neoplasms in internal and external patients, respectively. In 100 videos, ENDOANGEL-LD achieved superior sensitivity and negative predictive value for detecting gastric neoplasms from that of experts (100% vs 85.5% ± 3.4% [P = .003] and 100% vs 86.4% ± 2.8% [P = .002], respectively). In 2010 prospective consecutive patients, ENDOANGEL-LD achieved a sensitivity of 92.8% for detecting gastric lesions with 3.04 ± 3.04 false positives per gastroscopy and a sensitivity of 91.8% and specificity of 92.4% for diagnosing neoplasms.Our results show that ENDOANGEL-LD has great potential for assisting endoscopists in screening gastric lesions and suspicious neoplasms in clinical work. (Clinical trial registration number: ChiCTR2100045963.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执着的采枫完成签到 ,获得积分10
刚刚
刚刚
yue完成签到 ,获得积分10
1秒前
3秒前
4秒前
4秒前
爱你的心完成签到 ,获得积分10
5秒前
Tony发布了新的文献求助10
6秒前
雷博发布了新的文献求助50
7秒前
慕青应助壮观沉鱼采纳,获得10
7秒前
佩奇完成签到 ,获得积分10
8秒前
missing发布了新的文献求助10
8秒前
lagom发布了新的文献求助10
9秒前
Owen应助hh采纳,获得10
10秒前
咖褐完成签到 ,获得积分10
10秒前
迅捷海狸完成签到 ,获得积分20
11秒前
共享精神应助ckx采纳,获得30
11秒前
12秒前
lulu_fellow完成签到 ,获得积分10
12秒前
无花果应助烂漫绮兰采纳,获得10
13秒前
11122发布了新的文献求助10
16秒前
科目三应助lagom采纳,获得10
16秒前
18秒前
田様应助3sigma采纳,获得10
20秒前
Miracle_wh完成签到 ,获得积分10
20秒前
壮观沉鱼发布了新的文献求助10
21秒前
21秒前
feizzZ完成签到,获得积分10
23秒前
missing完成签到,获得积分10
24秒前
26秒前
bkagyin应助梓念采纳,获得10
26秒前
彭于晏应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
科研通AI6应助科研通管家采纳,获得10
27秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
30秒前
31秒前
xiaxia应助susie采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573086
求助须知:如何正确求助?哪些是违规求助? 4659218
关于积分的说明 14724003
捐赠科研通 4599058
什么是DOI,文献DOI怎么找? 2524103
邀请新用户注册赠送积分活动 1494642
关于科研通互助平台的介绍 1464679