Real-time artificial intelligence for detecting focal lesions and diagnosing neoplasms of the stomach by white-light endoscopy (with videos)

医学 假阳性悖论 前瞻性队列研究 放射科 试验预测值 彩色内窥镜 内窥镜 内窥镜检查 癌症 胃肠病学 人工智能 内科学 结肠镜检查 结直肠癌 计算机科学
作者
Lianlian Wu,Ming Xu,Xiaoda Jiang,Xinqi He,Heng Zhang,Yaowei Ai,Qiao-Yun Tong,Peihua Lv,Bin Lu,Mingwen Guo,Manling Huang,Liping Ye,Lei Shen,Honggang Yu
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:95 (2): 269-280.e6 被引量:51
标识
DOI:10.1016/j.gie.2021.09.017
摘要

White-light endoscopy (WLE) is the most pivotal tool to detect gastric cancer in an early stage. However, the skill among endoscopists varies greatly. Here, we aim to develop a deep learning-based system named ENDOANGEL-LD (lesion detection) to assist in detecting all focal gastric lesions and predicting neoplasms by WLE.Endoscopic images were retrospectively obtained from Renmin Hospital of Wuhan University (RHWU) for the development, validation, and internal test of the system. Additional external tests were conducted in 5 other hospitals to evaluate the robustness. Stored videos from RHWU were used for assessing and comparing the performance of ENDOANGEL-LD with that of experts. Prospective consecutive patients undergoing upper endoscopy were enrolled from May 6, 2021 to August 2, 2021 in RHWU to assess clinical practice applicability.Over 10,000 patients undergoing upper endoscopy were enrolled in this study. The sensitivities were 96.9% and 95.6% for detecting gastric lesions and 92.9% and 91.7% for diagnosing neoplasms in internal and external patients, respectively. In 100 videos, ENDOANGEL-LD achieved superior sensitivity and negative predictive value for detecting gastric neoplasms from that of experts (100% vs 85.5% ± 3.4% [P = .003] and 100% vs 86.4% ± 2.8% [P = .002], respectively). In 2010 prospective consecutive patients, ENDOANGEL-LD achieved a sensitivity of 92.8% for detecting gastric lesions with 3.04 ± 3.04 false positives per gastroscopy and a sensitivity of 91.8% and specificity of 92.4% for diagnosing neoplasms.Our results show that ENDOANGEL-LD has great potential for assisting endoscopists in screening gastric lesions and suspicious neoplasms in clinical work. (Clinical trial registration number: ChiCTR2100045963.).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandan完成签到,获得积分10
1秒前
大轩完成签到 ,获得积分10
6秒前
小周同学完成签到 ,获得积分10
9秒前
汉堡包应助nini采纳,获得10
12秒前
zenabia完成签到 ,获得积分10
13秒前
慕青应助wy97采纳,获得10
13秒前
13秒前
15秒前
含糊的茹妖完成签到 ,获得积分10
21秒前
Ding-Ding完成签到,获得积分10
22秒前
顺心的猪完成签到 ,获得积分10
26秒前
清爽的火车完成签到 ,获得积分10
28秒前
123456完成签到,获得积分10
32秒前
Rachel完成签到,获得积分10
32秒前
幽默的妍完成签到 ,获得积分10
34秒前
天使的诱惑913完成签到 ,获得积分10
37秒前
自然乐天发布了新的文献求助10
38秒前
41秒前
Yolenders完成签到 ,获得积分10
41秒前
Wanyeweiyu完成签到,获得积分10
43秒前
桂花完成签到 ,获得积分10
44秒前
君克渡完成签到,获得积分10
45秒前
清新的剑心完成签到 ,获得积分10
46秒前
可靠的书桃完成签到 ,获得积分10
51秒前
诚心的信封完成签到 ,获得积分10
55秒前
点点完成签到 ,获得积分10
59秒前
Debbie完成签到 ,获得积分10
1分钟前
毕业就集采的苦命人完成签到,获得积分10
1分钟前
JYY完成签到 ,获得积分10
1分钟前
科研通AI5应助houbinghua采纳,获得10
1分钟前
chenying完成签到 ,获得积分0
1分钟前
失眠的安卉完成签到,获得积分10
1分钟前
脑洞疼应助orchid采纳,获得10
1分钟前
lod完成签到,获得积分10
1分钟前
1分钟前
医学耗材完成签到,获得积分10
1分钟前
墨墨完成签到,获得积分10
1分钟前
等于几都行完成签到 ,获得积分10
1分钟前
相南相北完成签到 ,获得积分10
1分钟前
was_3完成签到,获得积分10
1分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733493
求助须知:如何正确求助?哪些是违规求助? 3277642
关于积分的说明 10003630
捐赠科研通 2993701
什么是DOI,文献DOI怎么找? 1642806
邀请新用户注册赠送积分活动 780644
科研通“疑难数据库(出版商)”最低求助积分说明 748944