清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression

不确定度量化 人工神经网络 克里金 时域 概率逻辑 高斯过程 结构健康监测 计算机科学 过程(计算) 机器学习 支持向量机 人工智能 工程类 高斯分布 结构工程 量子力学 计算机视觉 操作系统 物理
作者
Maor Farid
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:155: 106415-106415 被引量:46
标识
DOI:10.1016/j.ijfatigue.2021.106415
摘要

Various engineering systems such as naval and aerial vehicles, offshore structures, and mechanical components of motorized systems, are exposed to fatigue failures due to stochastic loadings. Methods for early failure prediction are essential for engineering, military, and civil applications. In addition to the prediction of time to failure (TtF), uncertainty quantification (UQ) is of major importance for real-time decision-making purposes. Usually, time domain or frequency domain methods are used for fatigue prediction, such as rainflow counting and Miner’s rule or Dirlik’s method. However, those methods suffer from over-simplistic modeling and inaccurate failure predictions under stochastic loadings. During the last years, several data-driven models were suggested for offline fatigue failure. However, most of them are not capable of both accurate real-time fatigue prediction and UQ. In the current work, a probabilistic data-driven model is introduced. A hybrid architecture of a fully connected artificial neural network (FC-ANN) and Gaussian process regression (GPR) is proposed to ensure enhanced predictive abilities and simultaneous UQ of the predicted TtF. The real-time prediction and UQ performances of the suggested model are validated using both synthetic and experimental data. This novel hybrid method is fully data-driven and extends the forecasting capabilities of existing time-domain and machine learning-based methods for fatigue prediction. It paves the way towards the development of a preventive system that provides real-time safety and operational instructions and insights for structural health monitoring (SHM) purposes, allowing prevention of environmental damage, and loss of human lives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zachary009完成签到 ,获得积分10
11秒前
高大又蓝完成签到,获得积分10
43秒前
高大又蓝发布了新的文献求助10
47秒前
潜行者完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
bingo完成签到,获得积分10
1分钟前
重庆森林完成签到,获得积分10
2分钟前
Ada完成签到 ,获得积分10
2分钟前
笨笨的怜雪完成签到 ,获得积分10
2分钟前
CodeCraft应助水雾采纳,获得10
3分钟前
彩色的芷容完成签到 ,获得积分10
3分钟前
平常以云完成签到 ,获得积分10
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
3分钟前
水雾发布了新的文献求助10
3分钟前
tt完成签到,获得积分10
4分钟前
Fairy完成签到,获得积分10
4分钟前
鹏程万里完成签到,获得积分10
5分钟前
暗号完成签到 ,获得积分0
5分钟前
LJJ完成签到,获得积分10
5分钟前
慕青应助研友_8RyzBZ采纳,获得10
5分钟前
ljl86400完成签到,获得积分10
6分钟前
6分钟前
研友_8RyzBZ发布了新的文献求助10
6分钟前
科研通AI6应助阳光的星月采纳,获得10
7分钟前
大个应助研友_8RyzBZ采纳,获得10
7分钟前
7分钟前
研友_8RyzBZ发布了新的文献求助10
8分钟前
123应助研友_8RyzBZ采纳,获得10
8分钟前
赘婿应助阳光的星月采纳,获得10
8分钟前
外向的妍完成签到,获得积分10
8分钟前
9分钟前
娟子完成签到,获得积分10
9分钟前
9分钟前
lsl应助Atopos采纳,获得30
10分钟前
Criminology34应助Atopos采纳,获得10
10分钟前
11分钟前
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5635162
求助须知:如何正确求助?哪些是违规求助? 4735022
关于积分的说明 14989826
捐赠科研通 4792862
什么是DOI,文献DOI怎么找? 2559967
邀请新用户注册赠送积分活动 1520215
关于科研通互助平台的介绍 1480311