Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression

不确定度量化 人工神经网络 克里金 时域 概率逻辑 高斯过程 结构健康监测 计算机科学 过程(计算) 机器学习 支持向量机 人工智能 工程类 高斯分布 结构工程 量子力学 计算机视觉 操作系统 物理
作者
Maor Farid
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:155: 106415-106415 被引量:46
标识
DOI:10.1016/j.ijfatigue.2021.106415
摘要

Various engineering systems such as naval and aerial vehicles, offshore structures, and mechanical components of motorized systems, are exposed to fatigue failures due to stochastic loadings. Methods for early failure prediction are essential for engineering, military, and civil applications. In addition to the prediction of time to failure (TtF), uncertainty quantification (UQ) is of major importance for real-time decision-making purposes. Usually, time domain or frequency domain methods are used for fatigue prediction, such as rainflow counting and Miner’s rule or Dirlik’s method. However, those methods suffer from over-simplistic modeling and inaccurate failure predictions under stochastic loadings. During the last years, several data-driven models were suggested for offline fatigue failure. However, most of them are not capable of both accurate real-time fatigue prediction and UQ. In the current work, a probabilistic data-driven model is introduced. A hybrid architecture of a fully connected artificial neural network (FC-ANN) and Gaussian process regression (GPR) is proposed to ensure enhanced predictive abilities and simultaneous UQ of the predicted TtF. The real-time prediction and UQ performances of the suggested model are validated using both synthetic and experimental data. This novel hybrid method is fully data-driven and extends the forecasting capabilities of existing time-domain and machine learning-based methods for fatigue prediction. It paves the way towards the development of a preventive system that provides real-time safety and operational instructions and insights for structural health monitoring (SHM) purposes, allowing prevention of environmental damage, and loss of human lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
可爱的函函应助二东采纳,获得10
2秒前
三愿完成签到,获得积分10
2秒前
sanmu完成签到,获得积分10
3秒前
合适绮波发布了新的文献求助10
3秒前
3秒前
facaihua完成签到,获得积分10
3秒前
3秒前
4712完成签到,获得积分10
4秒前
4秒前
欣慰小蕊完成签到,获得积分10
5秒前
伶俐的柚子完成签到,获得积分10
5秒前
7秒前
8秒前
8秒前
8秒前
wq发布了新的文献求助30
8秒前
坦率的匪应助乌漆嘛黑采纳,获得10
8秒前
坦率的匪应助小刘采纳,获得10
9秒前
曾经绿兰完成签到,获得积分10
9秒前
9秒前
cola发布了新的文献求助10
9秒前
www完成签到 ,获得积分10
9秒前
Rondab应助墨羽采纳,获得10
10秒前
合适绮波完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
13秒前
13秒前
14秒前
二东发布了新的文献求助10
14秒前
14秒前
LLL完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
Jasper应助标致谷菱采纳,获得10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113