Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression

不确定度量化 人工神经网络 克里金 时域 概率逻辑 高斯过程 结构健康监测 计算机科学 过程(计算) 机器学习 支持向量机 人工智能 工程类 高斯分布 结构工程 量子力学 计算机视觉 操作系统 物理
作者
Maor Farid
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:155: 106415-106415 被引量:46
标识
DOI:10.1016/j.ijfatigue.2021.106415
摘要

Various engineering systems such as naval and aerial vehicles, offshore structures, and mechanical components of motorized systems, are exposed to fatigue failures due to stochastic loadings. Methods for early failure prediction are essential for engineering, military, and civil applications. In addition to the prediction of time to failure (TtF), uncertainty quantification (UQ) is of major importance for real-time decision-making purposes. Usually, time domain or frequency domain methods are used for fatigue prediction, such as rainflow counting and Miner’s rule or Dirlik’s method. However, those methods suffer from over-simplistic modeling and inaccurate failure predictions under stochastic loadings. During the last years, several data-driven models were suggested for offline fatigue failure. However, most of them are not capable of both accurate real-time fatigue prediction and UQ. In the current work, a probabilistic data-driven model is introduced. A hybrid architecture of a fully connected artificial neural network (FC-ANN) and Gaussian process regression (GPR) is proposed to ensure enhanced predictive abilities and simultaneous UQ of the predicted TtF. The real-time prediction and UQ performances of the suggested model are validated using both synthetic and experimental data. This novel hybrid method is fully data-driven and extends the forecasting capabilities of existing time-domain and machine learning-based methods for fatigue prediction. It paves the way towards the development of a preventive system that provides real-time safety and operational instructions and insights for structural health monitoring (SHM) purposes, allowing prevention of environmental damage, and loss of human lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦完成签到 ,获得积分10
1秒前
Leo发布了新的文献求助10
1秒前
2秒前
@小小搬砖瑞完成签到,获得积分10
3秒前
迟迟完成签到,获得积分10
4秒前
天天快乐应助WYT采纳,获得10
5秒前
张牧之完成签到 ,获得积分10
5秒前
not发布了新的文献求助10
5秒前
等人间四季完成签到,获得积分10
5秒前
6秒前
nini完成签到,获得积分10
7秒前
Riggle G发布了新的文献求助10
7秒前
8秒前
8秒前
豆包完成签到,获得积分10
9秒前
三里墩头完成签到,获得积分10
9秒前
Eliauk完成签到,获得积分10
9秒前
10秒前
10秒前
笑点低易真完成签到,获得积分10
10秒前
10秒前
11秒前
慕容松完成签到,获得积分10
11秒前
Hello应助武雨寒采纳,获得10
11秒前
优雅静枫发布了新的文献求助10
12秒前
丘比特应助柠檬泡芙采纳,获得10
12秒前
彬彬完成签到,获得积分10
12秒前
艺玲发布了新的文献求助30
15秒前
15秒前
迟迟发布了新的文献求助10
16秒前
16秒前
舒适店员完成签到 ,获得积分10
16秒前
Aganlin完成签到 ,获得积分0
16秒前
not完成签到,获得积分10
16秒前
daydayup发布了新的文献求助10
17秒前
jtksbf完成签到,获得积分10
18秒前
18秒前
18秒前
俏皮的采波完成签到,获得积分10
19秒前
宜醉宜游宜睡应助艺玲采纳,获得10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159473
求助须知:如何正确求助?哪些是违规求助? 2810505
关于积分的说明 7888418
捐赠科研通 2469473
什么是DOI,文献DOI怎么找? 1314873
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012