亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression

不确定度量化 人工神经网络 克里金 时域 概率逻辑 高斯过程 结构健康监测 计算机科学 过程(计算) 机器学习 支持向量机 人工智能 工程类 高斯分布 结构工程 量子力学 计算机视觉 操作系统 物理
作者
Maor Farid
出处
期刊:International Journal of Fatigue [Elsevier BV]
卷期号:155: 106415-106415 被引量:46
标识
DOI:10.1016/j.ijfatigue.2021.106415
摘要

Various engineering systems such as naval and aerial vehicles, offshore structures, and mechanical components of motorized systems, are exposed to fatigue failures due to stochastic loadings. Methods for early failure prediction are essential for engineering, military, and civil applications. In addition to the prediction of time to failure (TtF), uncertainty quantification (UQ) is of major importance for real-time decision-making purposes. Usually, time domain or frequency domain methods are used for fatigue prediction, such as rainflow counting and Miner’s rule or Dirlik’s method. However, those methods suffer from over-simplistic modeling and inaccurate failure predictions under stochastic loadings. During the last years, several data-driven models were suggested for offline fatigue failure. However, most of them are not capable of both accurate real-time fatigue prediction and UQ. In the current work, a probabilistic data-driven model is introduced. A hybrid architecture of a fully connected artificial neural network (FC-ANN) and Gaussian process regression (GPR) is proposed to ensure enhanced predictive abilities and simultaneous UQ of the predicted TtF. The real-time prediction and UQ performances of the suggested model are validated using both synthetic and experimental data. This novel hybrid method is fully data-driven and extends the forecasting capabilities of existing time-domain and machine learning-based methods for fatigue prediction. It paves the way towards the development of a preventive system that provides real-time safety and operational instructions and insights for structural health monitoring (SHM) purposes, allowing prevention of environmental damage, and loss of human lives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HEIHEI完成签到,获得积分10
5秒前
6秒前
HEIHEI发布了新的文献求助10
11秒前
dashen完成签到 ,获得积分10
13秒前
sunny发布了新的文献求助10
18秒前
酷波er应助HEIHEI采纳,获得10
19秒前
淡定宛白完成签到,获得积分10
20秒前
Eason_C完成签到 ,获得积分10
20秒前
sss完成签到 ,获得积分10
22秒前
24秒前
24秒前
26秒前
繁荣的凡完成签到 ,获得积分10
26秒前
三岁完成签到 ,获得积分10
28秒前
天真大神发布了新的文献求助10
28秒前
chemj发布了新的文献求助10
28秒前
Kz发布了新的文献求助10
30秒前
chemj完成签到,获得积分20
34秒前
Ethan完成签到,获得积分10
38秒前
烟花应助chemj采纳,获得10
39秒前
天真大神完成签到,获得积分10
39秒前
nenoaowu完成签到,获得积分10
41秒前
111111完成签到,获得积分20
43秒前
李爱国应助慈祥的雅寒采纳,获得20
43秒前
希望天下0贩的0应助Kz采纳,获得10
44秒前
欢呼的小熊猫完成签到,获得积分20
47秒前
李爱国应助大大大大大王采纳,获得10
49秒前
魈玖完成签到,获得积分10
52秒前
葱葱完成签到,获得积分10
53秒前
润泽完成签到,获得积分10
55秒前
59秒前
1分钟前
优美的谷完成签到,获得积分10
1分钟前
明明发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
zztOvO发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5077035
求助须知:如何正确求助?哪些是违规求助? 4296314
关于积分的说明 13386817
捐赠科研通 4118612
什么是DOI,文献DOI怎么找? 2255417
邀请新用户注册赠送积分活动 1259879
关于科研通互助平台的介绍 1192954