清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven method for real-time prediction and uncertainty quantification of fatigue failure under stochastic loading using artificial neural networks and Gaussian process regression

不确定度量化 人工神经网络 克里金 时域 概率逻辑 高斯过程 结构健康监测 计算机科学 过程(计算) 机器学习 支持向量机 人工智能 工程类 高斯分布 结构工程 量子力学 计算机视觉 操作系统 物理
作者
Maor Farid
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:155: 106415-106415 被引量:46
标识
DOI:10.1016/j.ijfatigue.2021.106415
摘要

Various engineering systems such as naval and aerial vehicles, offshore structures, and mechanical components of motorized systems, are exposed to fatigue failures due to stochastic loadings. Methods for early failure prediction are essential for engineering, military, and civil applications. In addition to the prediction of time to failure (TtF), uncertainty quantification (UQ) is of major importance for real-time decision-making purposes. Usually, time domain or frequency domain methods are used for fatigue prediction, such as rainflow counting and Miner’s rule or Dirlik’s method. However, those methods suffer from over-simplistic modeling and inaccurate failure predictions under stochastic loadings. During the last years, several data-driven models were suggested for offline fatigue failure. However, most of them are not capable of both accurate real-time fatigue prediction and UQ. In the current work, a probabilistic data-driven model is introduced. A hybrid architecture of a fully connected artificial neural network (FC-ANN) and Gaussian process regression (GPR) is proposed to ensure enhanced predictive abilities and simultaneous UQ of the predicted TtF. The real-time prediction and UQ performances of the suggested model are validated using both synthetic and experimental data. This novel hybrid method is fully data-driven and extends the forecasting capabilities of existing time-domain and machine learning-based methods for fatigue prediction. It paves the way towards the development of a preventive system that provides real-time safety and operational instructions and insights for structural health monitoring (SHM) purposes, allowing prevention of environmental damage, and loss of human lives.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助读书的时候采纳,获得10
20秒前
47秒前
windy发布了新的文献求助10
53秒前
内向的绿应助读书的时候采纳,获得10
54秒前
windy完成签到,获得积分10
1分钟前
guoguo1119完成签到 ,获得积分10
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
酷酷海豚发布了新的文献求助10
1分钟前
义气云朵发布了新的文献求助10
1分钟前
Abdurrahman完成签到,获得积分10
1分钟前
1分钟前
2分钟前
义气云朵完成签到,获得积分10
2分钟前
明日边缘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
小蘑菇应助科研通管家采纳,获得10
3分钟前
catherine完成签到,获得积分10
3分钟前
3分钟前
figure完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
机智的孤兰完成签到 ,获得积分10
4分钟前
小young完成签到 ,获得积分0
4分钟前
4分钟前
但行好事发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732491
求助须知:如何正确求助?哪些是违规求助? 5340003
关于积分的说明 15322302
捐赠科研通 4878021
什么是DOI,文献DOI怎么找? 2620840
邀请新用户注册赠送积分活动 1570011
关于科研通互助平台的介绍 1526719