Hyperspectral band selection via region-aware latent features fusion based clustering

高光谱成像 计算机科学 模式识别(心理学) 人工智能 聚类分析 冗余(工程) 分割 特征选择 操作系统
作者
Jun Wang,Chang Tang,Zhenglai Li,Xinwang Liu,Wei Emma Zhang,En Zhu,Lizhe Wang
出处
期刊:Information Fusion [Elsevier]
卷期号:79: 162-173 被引量:28
标识
DOI:10.1016/j.inffus.2021.09.019
摘要

Band selection is one of the most effective methods to reduce the band redundancy of hyperspectral images (HSIs). Most existing band selection methods tend to regard each band as a whole, and then explore the band redundancy with the pixel-wise features directly. However, since the regions of HSIs corresponding to different objects have diverse spectral properties and spatial structure, such above scheme limits the performance of hyperspectral band selection due to the lack of spatial information. To address above issues, a novel band selection method via region-aware latent features fusion based clustering (RLFFC) is proposed. Specifically, we employ the superpixel segmentation to segment HSIs into multiple regions so that the spatial information of HSIs can be fully preserved. In order to capture the priori information, we construct its corresponding Laplacian matrix from which a group of low dimensional latent features are generated to further enhance the separability among different bands. Then, a shared latent feature representation of HSIs is obtained by fusing region-aware latent features to effectively capture the band redundancy of HSIs. Finally, the k-means clustering algorithm is utilized to obtain the index of the selected bands from the shared latent feature representation. As a result, the spectral and spatial properties are well exploited in the proposed method. Extensive experiments on four public hyperspectral datasets show that the proposed method achieves superior performance when compared with other state-of-the-art ones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大大大发完成签到,获得积分20
1秒前
2秒前
最初的远方完成签到,获得积分10
2秒前
拉萨小医生完成签到,获得积分10
3秒前
talpionchen发布了新的文献求助10
3秒前
曹帅发布了新的文献求助10
3秒前
4秒前
4秒前
巴拉巴拉发布了新的文献求助10
7秒前
天天快乐应助逆夏采纳,获得20
8秒前
8秒前
wickedzz完成签到,获得积分10
9秒前
情怀应助聪明的宛菡采纳,获得10
10秒前
11秒前
九点一定起完成签到 ,获得积分20
14秒前
dan应助巴拉巴拉采纳,获得10
15秒前
psybrain9527发布了新的文献求助30
17秒前
18秒前
受伤幻桃完成签到 ,获得积分10
18秒前
19秒前
汉堡包应助基础题采纳,获得90
21秒前
熠烁发布了新的文献求助10
23秒前
23秒前
117完成签到,获得积分10
23秒前
柒玖柒完成签到,获得积分10
24秒前
LinglongCai完成签到 ,获得积分10
24秒前
psybrain9527完成签到,获得积分10
24秒前
25秒前
tidongzhiwu完成签到,获得积分10
26秒前
zzyytt完成签到,获得积分10
26秒前
逆夏完成签到,获得积分20
26秒前
Creamai发布了新的文献求助10
28秒前
852应助AeroY采纳,获得10
30秒前
烟花应助kunkun采纳,获得30
31秒前
文艺宛海发布了新的文献求助30
31秒前
霸气的代天完成签到,获得积分10
33秒前
34秒前
熠烁完成签到,获得积分10
35秒前
赵飞天完成签到 ,获得积分10
37秒前
zrz发布了新的文献求助10
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137471
求助须知:如何正确求助?哪些是违规求助? 2788496
关于积分的说明 7786856
捐赠科研通 2444725
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625752
版权声明 601023