Convolutional neural network ensemble for Parkinson's disease detection from voice recordings

构音障碍 卷积神经网络 计算机科学 任务(项目管理) 语音识别 人工智能 人口 灵敏度(控制系统) 特征提取 帕金森病 模式识别(心理学) 机器学习 听力学 疾病 医学 病理 管理 经济 工程类 环境卫生 电子工程
作者
Máté Hireš,Matej Gazda,Peter Drotar,Nemuel Daniel Pah,Mohammod Abdul Motin,Dinesh Kumar
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:141: 105021-105021 被引量:14
标识
DOI:10.1016/j.compbiomed.2021.105021
摘要

The computerized detection of Parkinson's disease (PD) will facilitate population screening and frequent monitoring and provide a more objective measure of symptoms, benefiting both patients and healthcare providers. Dysarthria is an early symptom of the disease and examining it for computerized diagnosis and monitoring has been proposed. Deep learning-based approaches have advantages for such applications because they do not require manual feature extraction, and while this approach has achieved excellent results in speech recognition, its utilization in the detection of pathological voices is limited. In this work, we present an ensemble of convolutional neural networks (CNNs) for the detection of PD from the voice recordings of 50 healthy people and 50 people with PD obtained from PC-GITA, a publicly available database. We propose a multiple-fine-tuning method to train the base CNN. This approach reduces the semantical gap between the source task that has been used for network pretraining and the target task by expanding the training process by including training on another dataset. Training and testing were performed for each vowel separately, and a 10-fold validation was performed to test the models. The performance was measured by using accuracy, sensitivity, specificity and area under the ROC curve (AUC). The results show that this approach was able to distinguish between the voices of people with PD and those of healthy people for all vowels. While there were small differences between the different vowels, the best performance was when/a/was considered; we achieved 99% accuracy, 86.2% sensitivity, 93.3% specificity and 89.6% AUC. This shows that the method has potential for use in clinical practice for the screening, diagnosis and monitoring of PD, with the advantage that vowel-based voice recordings can be performed online without requiring additional hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助cldg采纳,获得10
刚刚
过时的热狗完成签到,获得积分10
1秒前
1秒前
ovo完成签到,获得积分10
3秒前
4秒前
4秒前
纯真的晴儿完成签到 ,获得积分10
5秒前
Ghooor发布了新的文献求助10
5秒前
英姑应助大意的安白采纳,获得10
5秒前
6秒前
共享精神应助早稻人采纳,获得30
7秒前
8秒前
8秒前
8秒前
zhangsf88完成签到,获得积分10
8秒前
SSSShawn发布了新的文献求助10
9秒前
李健应助cruise采纳,获得10
9秒前
凹凸先森应助皂皂采纳,获得20
10秒前
善学以致用应助甜磕采纳,获得10
10秒前
11秒前
wqm发布了新的文献求助10
11秒前
S1mple_gentleman完成签到,获得积分10
12秒前
12秒前
13秒前
Lucas应助RAP采纳,获得10
13秒前
天天快乐应助CL采纳,获得10
13秒前
杨YY发布了新的文献求助10
14秒前
14秒前
无情元瑶发布了新的文献求助10
15秒前
15秒前
完美世界应助Jtiger采纳,获得10
16秒前
樱花喵完成签到,获得积分10
16秒前
16秒前
材料生完成签到,获得积分10
16秒前
王嘿嘿完成签到,获得积分10
16秒前
领导范儿应助LING采纳,获得10
16秒前
albertxin发布了新的文献求助10
17秒前
17秒前
alexyang发布了新的文献求助10
18秒前
华仔应助UrHhoAOo采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470472
求助须知:如何正确求助?哪些是违规求助? 3063446
关于积分的说明 9083480
捐赠科研通 2753873
什么是DOI,文献DOI怎么找? 1511131
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698147