肠道菌群
丁酸盐
食品科学
化学
饲料添加剂
盲肠
丙酸盐
生物化学
饲料转化率
益生元
厚壁菌
作者
Qunbing Hu,Fugui Yin,Baocheng Li,Yuming Guo,Yulong Yin
标识
DOI:10.3389/fmicb.2021.715712
摘要
The current study was conducted to investigate the effect of dietary tributyrin (TB) administration on the intestinal and growth performances in Arbor Acres (AA) broilers under an isocaloric feeding regime. A total of 540 day-old healthy AA broilers were randomly assigned to five treatments with 12 replicates (pens) per treatment and nine birds per pen for 42 days. The dietary treatments were basal diet (control) and basal diet with TB at doses of 0.23 g/kg (TB1), 0.46 g/kg (TB2), 0.92 g/kg (TB3), and 1.84 g/kg (TB4). Particularly, to achieve the isocaloric and cost-saving experimental diets, soybean oil was replaced by the TB product (Eucalorie®) with equivalent metabolic energy contents, and the formulas were rebalanced with zeolite to get the sum of all the feed ingredients to 100%. On days 21 and 42, after weighing, the birds (one bird per replicate) whose body weight was close to the replicate average were euthanized to investigate the effect of dietary TB on intestinal morphology, intestinal bacterial population, and short-chain fatty acid contents. The results revealed that dietary TB administration increased the average daily gain, gain/feed ratio, and European broiler index (P < 0.05) and improved the intestinal morphology (P < 0.05) as indicated by higher villus height and the ratios of villus height/crypt depth in broilers. The incremental levels of TB increased the ileal Lactobacillus content (P = 0.05) and cecal Bacillus content (P = 0.02), respectively. Moreover, dietary TB administration also increased the contents of most of the selected short-chain fatty acids in ileal and cecal digesta (P < 0.05). Collectively, dietary TB administration quadratically improved the growth performance, intestinal morphology, beneficial bacterial population, and short-chain fatty acid levels under the isocaloric feeding regime, indicating better profit return potential in practical poultry operation.
科研通智能强力驱动
Strongly Powered by AbleSci AI