Two types of conformable fractional grey interval models and their applications in regional electricity consumption prediction

区间(图论) 共形矩阵 计算机科学 整数(计算机科学) 数学 基础(线性代数) 统计 数学优化 几何学 物理 量子力学 组合数学 程序设计语言
作者
Yitong Liu,Dingyü Xue,Yang Yang
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:153: 111628-111628 被引量:9
标识
DOI:10.1016/j.chaos.2021.111628
摘要

Taking the unbalance development inside a region into consideration, it will be better to express the regional electricity consumption (EC) value as an interval number to preserve more complete information. However, there are rare papers about this interesting topic. For the small amount of EC data, grey interval prediction model is employed in this paper. However, the existing models are almost all integer-order grey interval models and based on area coordinate conversion method. In order to fill this gap, and to obtain more accurate forecasting results, a conformable fractional non-homogenous discrete grey model (CFNDGM(1,1,α)) is proposed, and on the basis of CFNDGM model, two conformable fractional grey interval models are built. One is based on area coordinate conversion method (CFNDGM_AC), and the other is with information decomposition conversion method (CFNDGM_ID). The mathematical relationship of the two types of grey interval models is firstly given in this paper. It indicates that which type of model has better performance depends on the characteristics of original data. To assess the two fractional grey models, annal EC values in southern Jiangsu are taken as an example, and other four grey interval models are taken for comparison. Results show that CFNDGM_ID has the best performance among six models in both simulation and prediction. Then CFNDGM_ID is chosen to predict EC of southern Jiangsu in the next five years. To further improve forecasting accuracy, the optimal fitting size of CFNDGM_ID is selected. Forecasting results show that the EC in southern Jiangsu will increase in the next five years, but at a lower growth rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
电池博士完成签到,获得积分10
刚刚
sss312发布了新的文献求助10
刚刚
影儿完成签到,获得积分20
4秒前
MMMMathilda23完成签到,获得积分10
6秒前
6秒前
无花果应助王宇杰采纳,获得10
9秒前
9秒前
Lucas应助csj采纳,获得10
10秒前
科研通AI5应助活泼万言采纳,获得10
13秒前
wanwan应助灰底爆米花采纳,获得10
14秒前
yufeng完成签到 ,获得积分10
15秒前
太阳花发布了新的文献求助10
15秒前
wq完成签到,获得积分10
15秒前
科研通AI5应助聪明的元彤采纳,获得10
16秒前
大模型应助MMMMathilda23采纳,获得10
16秒前
17秒前
aike完成签到,获得积分10
18秒前
DavidXie应助摔跤的猫采纳,获得10
19秒前
淡淡乐巧完成签到 ,获得积分10
20秒前
闲着也是闲着完成签到,获得积分10
22秒前
Rondab应助Gtingting采纳,获得10
22秒前
Ren应助健康的雨安采纳,获得10
23秒前
LFFF999发布了新的文献求助10
23秒前
24秒前
科目三应助more采纳,获得10
24秒前
25秒前
杜兰特发布了新的文献求助10
27秒前
Gengsai发布了新的文献求助10
28秒前
28秒前
32秒前
32秒前
34秒前
六点完成签到,获得积分10
35秒前
研友_VZG7GZ应助lululala采纳,获得10
35秒前
36秒前
鸣笛应助xinxinxue采纳,获得20
37秒前
38秒前
范白白发布了新的文献求助10
38秒前
77发布了新的文献求助10
39秒前
李爱国应助sss312采纳,获得10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993068
求助须知:如何正确求助?哪些是违规求助? 3533981
关于积分的说明 11264261
捐赠科研通 3273665
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809644