Two types of conformable fractional grey interval models and their applications in regional electricity consumption prediction

区间(图论) 共形矩阵 计算机科学 整数(计算机科学) 数学 基础(线性代数) 统计 数学优化 几何学 量子力学 组合数学 物理 程序设计语言
作者
Yitong Liu,Dingyü Xue,Yang Yang
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:153: 111628-111628 被引量:9
标识
DOI:10.1016/j.chaos.2021.111628
摘要

Taking the unbalance development inside a region into consideration, it will be better to express the regional electricity consumption (EC) value as an interval number to preserve more complete information. However, there are rare papers about this interesting topic. For the small amount of EC data, grey interval prediction model is employed in this paper. However, the existing models are almost all integer-order grey interval models and based on area coordinate conversion method. In order to fill this gap, and to obtain more accurate forecasting results, a conformable fractional non-homogenous discrete grey model (CFNDGM(1,1,α)) is proposed, and on the basis of CFNDGM model, two conformable fractional grey interval models are built. One is based on area coordinate conversion method (CFNDGM_AC), and the other is with information decomposition conversion method (CFNDGM_ID). The mathematical relationship of the two types of grey interval models is firstly given in this paper. It indicates that which type of model has better performance depends on the characteristics of original data. To assess the two fractional grey models, annal EC values in southern Jiangsu are taken as an example, and other four grey interval models are taken for comparison. Results show that CFNDGM_ID has the best performance among six models in both simulation and prediction. Then CFNDGM_ID is chosen to predict EC of southern Jiangsu in the next five years. To further improve forecasting accuracy, the optimal fitting size of CFNDGM_ID is selected. Forecasting results show that the EC in southern Jiangsu will increase in the next five years, but at a lower growth rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
buno应助88采纳,获得10
2秒前
3秒前
三千世界完成签到,获得积分10
3秒前
3秒前
愉快的访旋完成签到,获得积分10
4秒前
Alpha完成签到,获得积分10
5秒前
大大发布了新的文献求助30
5秒前
翠翠发布了新的文献求助10
6秒前
半山发布了新的文献求助10
7秒前
7秒前
天天快乐应助CO2采纳,获得10
7秒前
隐形曼青应助junzilan采纳,获得10
8秒前
Dksido发布了新的文献求助10
8秒前
9秒前
思源应助卓哥采纳,获得10
9秒前
mysci完成签到,获得积分10
12秒前
13秒前
Quzhengkai发布了新的文献求助10
14秒前
14秒前
15秒前
落寞晓灵完成签到,获得积分10
15秒前
ORAzzz应助翠翠采纳,获得20
16秒前
zoe完成签到,获得积分10
16秒前
习习应助学术小白采纳,获得10
16秒前
17秒前
18秒前
tianny关注了科研通微信公众号
19秒前
19秒前
CO2发布了新的文献求助10
19秒前
桐桐应助zhangscience采纳,获得10
20秒前
求助发布了新的文献求助10
21秒前
buno应助zoe采纳,获得10
22秒前
junzilan发布了新的文献求助10
22秒前
22秒前
细品岁月完成签到 ,获得积分10
22秒前
细心书蕾完成签到 ,获得积分10
23秒前
无花果应助l11x29采纳,获得10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808