大豆蛋白
糖尿病
背景(考古学)
炎症
葡萄糖稳态
平衡
体内
肽
脂质代谢
医学
能量稳态
内分泌学
内科学
生物
胰岛素抵抗
生物化学
肥胖
生物技术
古生物学
作者
Dibyendu Das,Mir Ekbal Kabir,Sanjib Sarkar,Sawlang Borsingh Wann,Jatin Kalita,Prasenjit Manna
标识
DOI:10.1016/j.ijbiomac.2021.11.131
摘要
Soybean (Glycine max) harbours high quality proteins which have been evident to exhibit therapeutic properties in alleviating many diseases including but not limited to diabetes and its related metabolic complications. Since diabetes is often manifested with hyperglycemia, impaired energy homeostasis and even low-grade chronic inflammation, plenty of information has raised the suggestion for soy protein supplementation in preventing and controlling these abnormalities. Moreover, clinical intervention studies have established a noteworthy correlation between soy protein intake and lower prevalence of diabetes. Besides soy protein, various soy-derived peptides also have been found to trigger antidiabetic response in different in vitro and in vivo models. Molecular mechanisms underlying the antidiabetic actions of soy protein and peptide have been predicted in many literatures. Results demonstrate that components of soy protein can act in diversified ways and modulate various cell signaling pathways to bring energy homeostasis and to regulate inflammatory parameters associated with diabetic pathophysiology. The main objective of the present review lies in a systemic understanding of antidiabetic role of soy protein and peptide in the context of impaired glucose and lipid metabolism, and inflammation.
科研通智能强力驱动
Strongly Powered by AbleSci AI