清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Understanding the CO2/CH4/N2 Separation Performance of Nanoporous Amorphous N‐Doped Carbon Combined Hybrid Monte Carlo with Machine Learning

无定形固体 吸附 无定形碳 纳米孔 材料科学 碳纤维 选择性 蒙特卡罗方法 气体分离 掺杂剂 氮气 兴奋剂 化学工程 纳米技术 化学 物理化学 有机化学 复合材料 生物化学 统计 数学 光电子学 复合数 工程类 催化作用
作者
Boran Li,Song Wang,Ziqi Tian,Ge Yao,Hui Li,Liang Chen
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:5 (1) 被引量:12
标识
DOI:10.1002/adts.202100378
摘要

Abstract Amorphous carbon (aC) is widely used as the adsorbent in the purification of industrial gas. Introducing nitrogen dopant can regulate the morphology and improve the adsorption capacity of specific species. Due to the amorphous structure, it is difficult to understand the relationship between structural features and adsorption performance through atom‐based simulation. Here, a series of nitrogen‐doped amorphous carbon (N‐aC) models is built through reverse Monte Carlo method. The uptakes of three common gases, i.e., CO 2 , CH 4 , and N 2 are estimated in each constructed framework by using grand canonical Monte Carlo (GCMC). Deep neural network is trained based on the simulated adsorption capacity with nitrogen content, surface area, pore size, atomic charge, and other factors. Through the data‐driven approaches, the adsorption capacity and the selectivity of three gases are predicted. The simulation in this study shows that the nitrogen content has less influence on the capacity and selectivity than the structural parameters, while nitrogen doping may improve CO 2 loading and separation selectivity in the nanopores with pore size close to gas molecules. This work is helpful in constructing amorphous carbon structures for further simulation and understanding the influence of various features on gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人应助科研通管家采纳,获得10
14秒前
有人应助科研通管家采纳,获得10
14秒前
有人应助科研通管家采纳,获得10
14秒前
有人应助科研通管家采纳,获得10
14秒前
14秒前
有人应助科研通管家采纳,获得10
14秒前
有人应助科研通管家采纳,获得10
15秒前
有人应助科研通管家采纳,获得10
15秒前
有人应助科研通管家采纳,获得10
15秒前
有人应助科研通管家采纳,获得10
15秒前
有人应助科研通管家采纳,获得10
15秒前
有人应助科研通管家采纳,获得10
15秒前
77wlr完成签到,获得积分10
54秒前
深情安青应助陶醉的烤鸡采纳,获得10
1分钟前
喜悦的唇彩完成签到,获得积分10
1分钟前
1分钟前
成就小蜜蜂完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
源孤律醒完成签到 ,获得积分10
1分钟前
冷静的尔竹完成签到,获得积分10
2分钟前
隐形荟完成签到 ,获得积分10
2分钟前
muriel完成签到,获得积分0
2分钟前
creep2020完成签到,获得积分10
2分钟前
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
kmzzy完成签到,获得积分10
2分钟前
共享精神应助张子捷采纳,获得10
2分钟前
张子捷完成签到,获得积分10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789037
求助须知:如何正确求助?哪些是违规求助? 5714702
关于积分的说明 15474095
捐赠科研通 4916983
什么是DOI,文献DOI怎么找? 2646691
邀请新用户注册赠送积分活动 1594335
关于科研通互助平台的介绍 1548797