Denoising Deep Learning Network Based on Singular Spectrum Analysis—DAS Seismic Data Denoising With Multichannel SVDDCNN

降噪 计算机科学 噪音(视频) 奇异谱分析 奇异值分解 噪声测量 模式识别(心理学) 奇异值 人工智能 特征向量 量子力学 图像(数学) 物理
作者
Qiankun Feng,Yue Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:51
标识
DOI:10.1109/tgrs.2021.3071189
摘要

Distributed acoustic sensing (DAS) is a new tool with low cost, sensitive signal capture, and complete coverage for vertical seismic profile (VSP) acquisition. Although DAS has obvious advantages over geophones, some weaknesses may limit its application. The main challenge is that DAS is polluted by various types of noise, including optical abnormal noise, random background noise, fading noise, and so on. To suppress these novel noises, we developed a new denoising neural network based on singular spectrum analysis—multichannel singular value decomposition denoising convolutional neural network (SVDDCNN). The network can simultaneously extract data features from singular spectrum instead of the time domain, which can represent geophysical features more accurately and help separate signals from noises. Second, a multichannel input layer is designed, and the input is decomposed into three subspaces by singular spectrum analysis, which provides records of different signal-to-noise ratios (SNRs) for training and improves generalization ability of the network. Third, to enhance the quality of the data set, we added the noise subspace records removed by SVD into the training set to provide various forms of noise with different singular spectra. Both synthetic and field examples show that our network has achieved impressive denoising of DAS VSP and demonstrated competitive performance compared with other methods. Furthermore, the structure similarity (SSIM) map is introduced to evaluate the signal leakage by calculating the similarity between the denoised record and the removed noise record. The lowest SSIM index of the proposed network indicated superior signal preservation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
super小萌萌完成签到,获得积分10
刚刚
April完成签到 ,获得积分10
刚刚
雪白问兰应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得20
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
maox1aoxin应助科研通管家采纳,获得80
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
zhong完成签到,获得积分10
1秒前
36456657应助科研通管家采纳,获得10
1秒前
100完成签到,获得积分20
1秒前
领导范儿应助科研通管家采纳,获得30
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
控制小弟应助科研通管家采纳,获得10
1秒前
2秒前
SciGPT应助从容的幻然采纳,获得30
2秒前
无情念之完成签到,获得积分20
2秒前
YL完成签到,获得积分10
2秒前
2秒前
京言完成签到,获得积分10
2秒前
小宇发布了新的文献求助10
3秒前
3秒前
大胆的小白菜完成签到,获得积分10
3秒前
不是省油的灯完成签到,获得积分10
4秒前
小管完成签到,获得积分20
4秒前
niu1发布了新的文献求助10
4秒前
夏泽水梦完成签到,获得积分10
6秒前
老实的半山完成签到,获得积分10
6秒前
指纹抒写年轮完成签到,获得积分10
6秒前
愉快的哈密瓜完成签到,获得积分10
6秒前
小小发布了新的文献求助10
6秒前
小二郎应助成就缘分采纳,获得10
6秒前
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672