Denoising Deep Learning Network Based on Singular Spectrum Analysis—DAS Seismic Data Denoising With Multichannel SVDDCNN

降噪 计算机科学 噪音(视频) 奇异谱分析 奇异值分解 噪声测量 模式识别(心理学) 奇异值 人工智能 特征向量 量子力学 图像(数学) 物理
作者
Qiankun Feng,Yue Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:51
标识
DOI:10.1109/tgrs.2021.3071189
摘要

Distributed acoustic sensing (DAS) is a new tool with low cost, sensitive signal capture, and complete coverage for vertical seismic profile (VSP) acquisition. Although DAS has obvious advantages over geophones, some weaknesses may limit its application. The main challenge is that DAS is polluted by various types of noise, including optical abnormal noise, random background noise, fading noise, and so on. To suppress these novel noises, we developed a new denoising neural network based on singular spectrum analysis—multichannel singular value decomposition denoising convolutional neural network (SVDDCNN). The network can simultaneously extract data features from singular spectrum instead of the time domain, which can represent geophysical features more accurately and help separate signals from noises. Second, a multichannel input layer is designed, and the input is decomposed into three subspaces by singular spectrum analysis, which provides records of different signal-to-noise ratios (SNRs) for training and improves generalization ability of the network. Third, to enhance the quality of the data set, we added the noise subspace records removed by SVD into the training set to provide various forms of noise with different singular spectra. Both synthetic and field examples show that our network has achieved impressive denoising of DAS VSP and demonstrated competitive performance compared with other methods. Furthermore, the structure similarity (SSIM) map is introduced to evaluate the signal leakage by calculating the similarity between the denoised record and the removed noise record. The lowest SSIM index of the proposed network indicated superior signal preservation ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dungaway发布了新的文献求助10
1秒前
xcc完成签到,获得积分10
1秒前
1秒前
灯灯发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助楼下太吵了采纳,获得10
3秒前
liwenmming完成签到,获得积分10
3秒前
寂寞的听双完成签到,获得积分10
3秒前
磨人的老妖精完成签到,获得积分10
4秒前
lmc完成签到,获得积分10
4秒前
慧慧子完成签到,获得积分10
4秒前
11完成签到,获得积分10
4秒前
小白完成签到,获得积分10
5秒前
嘟嘟大魔王完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
称心的南霜完成签到,获得积分10
6秒前
vivi猫小咪完成签到,获得积分10
6秒前
zoe发布了新的文献求助10
6秒前
苗条辣条完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
Rainsky完成签到 ,获得积分10
8秒前
wu完成签到,获得积分10
8秒前
薏晓完成签到 ,获得积分10
9秒前
上官若男应助灯灯采纳,获得10
9秒前
善学以致用应助yr采纳,获得10
9秒前
9秒前
mzmz完成签到,获得积分20
9秒前
郝郝完成签到,获得积分10
9秒前
一只否酱完成签到,获得积分10
10秒前
故里完成签到,获得积分10
10秒前
河大青椒发布了新的文献求助10
10秒前
橙熟完成签到,获得积分10
10秒前
苗条辣条发布了新的文献求助10
11秒前
务实黄豆完成签到,获得积分10
11秒前
12秒前
金枪鱼发布了新的文献求助10
12秒前
清爽的碧空完成签到,获得积分10
12秒前
高兴123完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570