Denoising Deep Learning Network Based on Singular Spectrum Analysis—DAS Seismic Data Denoising With Multichannel SVDDCNN

降噪 计算机科学 噪音(视频) 奇异谱分析 奇异值分解 噪声测量 模式识别(心理学) 奇异值 人工智能 特征向量 量子力学 图像(数学) 物理
作者
Qiankun Feng,Yue Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:51
标识
DOI:10.1109/tgrs.2021.3071189
摘要

Distributed acoustic sensing (DAS) is a new tool with low cost, sensitive signal capture, and complete coverage for vertical seismic profile (VSP) acquisition. Although DAS has obvious advantages over geophones, some weaknesses may limit its application. The main challenge is that DAS is polluted by various types of noise, including optical abnormal noise, random background noise, fading noise, and so on. To suppress these novel noises, we developed a new denoising neural network based on singular spectrum analysis—multichannel singular value decomposition denoising convolutional neural network (SVDDCNN). The network can simultaneously extract data features from singular spectrum instead of the time domain, which can represent geophysical features more accurately and help separate signals from noises. Second, a multichannel input layer is designed, and the input is decomposed into three subspaces by singular spectrum analysis, which provides records of different signal-to-noise ratios (SNRs) for training and improves generalization ability of the network. Third, to enhance the quality of the data set, we added the noise subspace records removed by SVD into the training set to provide various forms of noise with different singular spectra. Both synthetic and field examples show that our network has achieved impressive denoising of DAS VSP and demonstrated competitive performance compared with other methods. Furthermore, the structure similarity (SSIM) map is introduced to evaluate the signal leakage by calculating the similarity between the denoised record and the removed noise record. The lowest SSIM index of the proposed network indicated superior signal preservation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
mzhmhy发布了新的文献求助10
3秒前
李健的粉丝团团长应助ASA采纳,获得30
4秒前
Choi完成签到,获得积分0
4秒前
无辜如容发布了新的文献求助10
4秒前
123完成签到,获得积分10
5秒前
6秒前
单耳兔完成签到 ,获得积分10
6秒前
潇湘雪月发布了新的文献求助10
6秒前
故意的靳完成签到,获得积分10
8秒前
mzhmhy完成签到,获得积分10
8秒前
bkagyin应助wish采纳,获得10
12秒前
Afaq发布了新的文献求助10
12秒前
果粒多发布了新的文献求助10
13秒前
13秒前
无辜如容完成签到,获得积分10
14秒前
14秒前
17秒前
18秒前
ASA发布了新的文献求助30
18秒前
19秒前
情怀应助tingting9采纳,获得10
20秒前
FXQ123_范发布了新的文献求助10
20秒前
sun完成签到,获得积分20
20秒前
22秒前
彭于晏应助wldsd采纳,获得30
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
23秒前
高一淼发布了新的文献求助10
24秒前
明道若昧完成签到,获得积分10
24秒前
上官若男应助mk采纳,获得10
25秒前
wish完成签到,获得积分10
27秒前
wish发布了新的文献求助10
29秒前
稍等一下完成签到 ,获得积分10
30秒前
momo发布了新的文献求助10
30秒前
32秒前
32秒前
liang白开完成签到,获得积分10
34秒前
mk发布了新的文献求助10
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136