Denoising Deep Learning Network Based on Singular Spectrum Analysis—DAS Seismic Data Denoising With Multichannel SVDDCNN

降噪 计算机科学 噪音(视频) 奇异谱分析 奇异值分解 噪声测量 模式识别(心理学) 奇异值 人工智能 特征向量 量子力学 图像(数学) 物理
作者
Qiankun Feng,Yue Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:51
标识
DOI:10.1109/tgrs.2021.3071189
摘要

Distributed acoustic sensing (DAS) is a new tool with low cost, sensitive signal capture, and complete coverage for vertical seismic profile (VSP) acquisition. Although DAS has obvious advantages over geophones, some weaknesses may limit its application. The main challenge is that DAS is polluted by various types of noise, including optical abnormal noise, random background noise, fading noise, and so on. To suppress these novel noises, we developed a new denoising neural network based on singular spectrum analysis—multichannel singular value decomposition denoising convolutional neural network (SVDDCNN). The network can simultaneously extract data features from singular spectrum instead of the time domain, which can represent geophysical features more accurately and help separate signals from noises. Second, a multichannel input layer is designed, and the input is decomposed into three subspaces by singular spectrum analysis, which provides records of different signal-to-noise ratios (SNRs) for training and improves generalization ability of the network. Third, to enhance the quality of the data set, we added the noise subspace records removed by SVD into the training set to provide various forms of noise with different singular spectra. Both synthetic and field examples show that our network has achieved impressive denoising of DAS VSP and demonstrated competitive performance compared with other methods. Furthermore, the structure similarity (SSIM) map is introduced to evaluate the signal leakage by calculating the similarity between the denoised record and the removed noise record. The lowest SSIM index of the proposed network indicated superior signal preservation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欺负王羲之的鹅完成签到,获得积分10
1秒前
2秒前
2秒前
勤劳溪灵发布了新的文献求助10
2秒前
3秒前
3秒前
xiaodaiduyan发布了新的文献求助10
4秒前
热风发布了新的文献求助10
6秒前
有点灰完成签到,获得积分10
7秒前
7秒前
晚自习给晚自习的求助进行了留言
8秒前
哈哈发布了新的文献求助10
8秒前
8秒前
兴奋的汽车完成签到 ,获得积分10
8秒前
山河故人发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
鳗鱼尔安完成签到,获得积分10
10秒前
11秒前
鳗鱼尔安发布了新的文献求助10
12秒前
13秒前
add发布了新的文献求助10
13秒前
ZW发布了新的文献求助10
14秒前
YANGLan完成签到,获得积分10
14秒前
Persistence发布了新的文献求助10
15秒前
16秒前
DireWolf发布了新的文献求助10
17秒前
hardyx发布了新的文献求助10
18秒前
19秒前
哈哈完成签到,获得积分20
19秒前
完美世界应助wangli采纳,获得10
20秒前
liuUU应助科研通管家采纳,获得10
20秒前
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
方赫然应助科研通管家采纳,获得10
21秒前
cocolu应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
bkagyin应助科研通管家采纳,获得10
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306839
求助须知:如何正确求助?哪些是违规求助? 2940658
关于积分的说明 8497925
捐赠科研通 2614820
什么是DOI,文献DOI怎么找? 1428526
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263