Denoising Deep Learning Network Based on Singular Spectrum Analysis—DAS Seismic Data Denoising With Multichannel SVDDCNN

降噪 计算机科学 噪音(视频) 奇异谱分析 奇异值分解 噪声测量 模式识别(心理学) 奇异值 人工智能 特征向量 量子力学 图像(数学) 物理
作者
Qiankun Feng,Yue Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:51
标识
DOI:10.1109/tgrs.2021.3071189
摘要

Distributed acoustic sensing (DAS) is a new tool with low cost, sensitive signal capture, and complete coverage for vertical seismic profile (VSP) acquisition. Although DAS has obvious advantages over geophones, some weaknesses may limit its application. The main challenge is that DAS is polluted by various types of noise, including optical abnormal noise, random background noise, fading noise, and so on. To suppress these novel noises, we developed a new denoising neural network based on singular spectrum analysis—multichannel singular value decomposition denoising convolutional neural network (SVDDCNN). The network can simultaneously extract data features from singular spectrum instead of the time domain, which can represent geophysical features more accurately and help separate signals from noises. Second, a multichannel input layer is designed, and the input is decomposed into three subspaces by singular spectrum analysis, which provides records of different signal-to-noise ratios (SNRs) for training and improves generalization ability of the network. Third, to enhance the quality of the data set, we added the noise subspace records removed by SVD into the training set to provide various forms of noise with different singular spectra. Both synthetic and field examples show that our network has achieved impressive denoising of DAS VSP and demonstrated competitive performance compared with other methods. Furthermore, the structure similarity (SSIM) map is introduced to evaluate the signal leakage by calculating the similarity between the denoised record and the removed noise record. The lowest SSIM index of the proposed network indicated superior signal preservation ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助YJ888采纳,获得10
刚刚
yyyhhh发布了新的文献求助10
1秒前
活泼又晴发布了新的文献求助10
1秒前
太阳当空照完成签到,获得积分10
1秒前
王怡发布了新的文献求助10
1秒前
2秒前
Jasper应助猹尔斯采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
半废人完成签到,获得积分10
4秒前
bkagyin应助自信璎采纳,获得10
4秒前
4秒前
4秒前
4秒前
lfchen完成签到,获得积分10
4秒前
Ava应助木木采纳,获得10
4秒前
Cc发布了新的文献求助10
5秒前
nn发布了新的文献求助10
5秒前
6秒前
赘婿应助快乐旭尧采纳,获得10
6秒前
拾月发布了新的文献求助10
6秒前
7秒前
orixero应助wenyiboy采纳,获得10
7秒前
7秒前
李健的小迷弟应助77777采纳,获得10
7秒前
8秒前
8秒前
aaa完成签到 ,获得积分10
9秒前
9秒前
Cactus应助promise采纳,获得10
9秒前
10秒前
我wwww发布了新的文献求助10
11秒前
熙梓日记发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
杨氏完成签到,获得积分10
13秒前
自信璎完成签到,获得积分10
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709