亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward a better understanding about real-world evidence.

作者
Mei Liu,Yana Qi,Wen Wang,Xin Sun
出处
期刊:European Journal of Hospital Pharmacy [BMJ]
被引量:2
标识
DOI:10.1136/ejhpharm-2021-003081
摘要

Background There has been an interest in real-world evidence (RWE) in recent years. RWE is usually generated from data derived from routine healthcare, such as electronic healthcare records and disease registries. While RWE has many advantages, it is often open to various biases, which may distort results. Appropriate understanding and interpretation are critical to the best use of RWE in healthcare decisions. Methods On the basis of a literature review and empirical research experience, we summarised the concept and methodological framework of RWE, and discussed in detail methodological issues specific to routinely collected healthcare data and observational studies using such data. Results RWE is derived from a spectrum of data generated from the real-world setting, using two broad study designs including observational studies and pragmatic clinical trials. Real-world data may usually be collected through routine practice or sometimes actively collected with a research purpose. Observational studies using routinely collected data (RCD) are the most common type of RWE, although they are prone to biases. When planning and implementing RWE studies, coherent working steps are warranted, including definition of a clear and answerable research question, development of a research team, selection of a fit-for-purpose data source, choice of state-of-the-art study design, establishing a database with transparent data processing, performing multiple statistical analysis to control bias, and reporting results in accordance with established guidelines. Conclusions RWE has been mounting over the years. The appropriate interpretation and use of such evidence often warrant adequate understanding about methodology. Researchers and policymakers should be aware of the methodological pitfalls when generating and interpreting RWE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZXneuro完成签到,获得积分10
9秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
酷酷问夏完成签到 ,获得积分10
20秒前
hb发布了新的文献求助10
23秒前
撒旦asd发布了新的文献求助10
30秒前
科研通AI6.1应助LucyMartinez采纳,获得20
33秒前
爆米花应助读书的时候采纳,获得10
40秒前
52秒前
1分钟前
Ava应助读书的时候采纳,获得10
1分钟前
aaa完成签到,获得积分10
1分钟前
撒旦asd发布了新的文献求助10
1分钟前
科研通AI6.1应助hb采纳,获得10
1分钟前
1分钟前
六爻发布了新的文献求助10
1分钟前
1分钟前
脑洞疼应助撒旦asd采纳,获得10
1分钟前
1分钟前
Lucas应助读书的时候采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得100
2分钟前
充电宝应助科研通管家采纳,获得30
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
bkagyin应助zdseu采纳,获得10
2分钟前
2分钟前
Hello应助读书的时候采纳,获得10
2分钟前
zdseu发布了新的文献求助10
2分钟前
小红发布了新的文献求助10
3分钟前
3分钟前
每天都要开心完成签到 ,获得积分10
3分钟前
sdshi完成签到,获得积分10
3分钟前
3分钟前
阿星完成签到,获得积分10
3分钟前
3分钟前
阿星发布了新的文献求助10
3分钟前
sdshi发布了新的文献求助10
3分钟前
Tania完成签到,获得积分10
3分钟前
科研通AI6.1应助老杨采纳,获得30
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739702
求助须知:如何正确求助?哪些是违规求助? 5388560
关于积分的说明 15339909
捐赠科研通 4882093
什么是DOI,文献DOI怎么找? 2624126
邀请新用户注册赠送积分活动 1572850
关于科研通互助平台的介绍 1529667