重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Toward a better understanding about real-world evidence.

作者
Mei Liu,Yana Qi,Wen Wang,Xin Sun
出处
期刊:European Journal of Hospital Pharmacy [BMJ]
被引量:2
标识
DOI:10.1136/ejhpharm-2021-003081
摘要

Background There has been an interest in real-world evidence (RWE) in recent years. RWE is usually generated from data derived from routine healthcare, such as electronic healthcare records and disease registries. While RWE has many advantages, it is often open to various biases, which may distort results. Appropriate understanding and interpretation are critical to the best use of RWE in healthcare decisions. Methods On the basis of a literature review and empirical research experience, we summarised the concept and methodological framework of RWE, and discussed in detail methodological issues specific to routinely collected healthcare data and observational studies using such data. Results RWE is derived from a spectrum of data generated from the real-world setting, using two broad study designs including observational studies and pragmatic clinical trials. Real-world data may usually be collected through routine practice or sometimes actively collected with a research purpose. Observational studies using routinely collected data (RCD) are the most common type of RWE, although they are prone to biases. When planning and implementing RWE studies, coherent working steps are warranted, including definition of a clear and answerable research question, development of a research team, selection of a fit-for-purpose data source, choice of state-of-the-art study design, establishing a database with transparent data processing, performing multiple statistical analysis to control bias, and reporting results in accordance with established guidelines. Conclusions RWE has been mounting over the years. The appropriate interpretation and use of such evidence often warrant adequate understanding about methodology. Researchers and policymakers should be aware of the methodological pitfalls when generating and interpreting RWE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
盛清让发布了新的文献求助10
刚刚
浮若安生完成签到,获得积分10
刚刚
纳古菌完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
笑点低怀亦完成签到,获得积分10
2秒前
2秒前
2秒前
silent完成签到,获得积分10
2秒前
2秒前
卜逍遥发布了新的文献求助10
3秒前
3秒前
妮可粒子完成签到,获得积分10
3秒前
MrDI完成签到,获得积分10
3秒前
打打应助11采纳,获得10
3秒前
4秒前
dew应助想想采纳,获得10
4秒前
木木完成签到,获得积分10
4秒前
李爱国应助111采纳,获得10
4秒前
Ava应助711notfound采纳,获得10
4秒前
4秒前
科研通AI6应助要减肥紫山采纳,获得10
5秒前
乐乐应助你睡他俩中间采纳,获得10
5秒前
科研通AI6应助ying采纳,获得10
5秒前
5秒前
麦兜发布了新的文献求助10
6秒前
Gang发布了新的文献求助10
6秒前
充电宝应助tkdzjr12345采纳,获得10
7秒前
7秒前
谨慎道消完成签到,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
苏槑特完成签到,获得积分10
8秒前
junfly完成签到,获得积分10
8秒前
刘寒完成签到,获得积分10
9秒前
QQ发布了新的文献求助10
9秒前
后来发布了新的文献求助10
9秒前
10秒前
楠珊发布了新的文献求助10
10秒前
taotao216完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467477
求助须知:如何正确求助?哪些是违规求助? 4571182
关于积分的说明 14329082
捐赠科研通 4497783
什么是DOI,文献DOI怎么找? 2464081
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427654