CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma

医学 肾透明细胞癌 阶段(地层学) 无线电技术 接收机工作特性 神经组阅片室 肾细胞癌 清除单元格 肿瘤分级 放射科 曲线下面积 核医学 内科学 癌症 古生物学 精神科 生物 神经学
作者
Natalie L. Demirjian,Bino Varghese,Steven Cen,Darryl Hwang,Manju Aron,Imran Siddiqui,Brandon K.K. Fields,Xiaomeng Lei,Felix Y. Yap,Marielena Rivas,Sharath S. Reddy,Haris Zahoor,Derek Liu,Mihir Desai,Suhn K. Rhie,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2552-2563 被引量:96
标识
DOI:10.1007/s00330-021-08344-4
摘要

To evaluate the utility of CT-based radiomics signatures in discriminating low-grade (grades 1-2) clear cell renal cell carcinomas (ccRCC) from high-grade (grades 3-4) and low TNM stage (stages I-II) ccRCC from high TNM stage (stages III-IV).A total of 587 subjects (mean age 60.2 years ± 12.2; range 22-88.7 years) with ccRCC were included. A total of 255 tumors were high grade and 153 were high stage. For each subject, one dominant tumor was delineated as the region of interest (ROI). Our institutional radiomics pipeline was then used to extract 2824 radiomics features across 12 texture families from the manually segmented volumes of interest. Separate iterations of the machine learning models using all extracted features (full model) as well as only a subset of previously identified robust metrics (robust model) were developed. Variable of importance (VOI) analysis was performed using the out-of-bag Gini index to identify the top 10 radiomics metrics driving each classifier. Model performance was reported using area under the receiver operating curve (AUC).The highest AUC to distinguish between low- and high-grade ccRCC was 0.70 (95% CI 0.62-0.78) and the highest AUC to distinguish between low- and high-stage ccRCC was 0.80 (95% CI 0.74-0.86). Comparable AUCs of 0.73 (95% CI 0.65-0.8) and 0.77 (95% CI 0.7-0.84) were reported using the robust model for grade and stage classification, respectively. VOI analysis revealed the importance of neighborhood operation-based methods, including GLCM, GLDM, and GLRLM, in driving the performance of the robust models for both grade and stage classification.Post-validation, CT-based radiomics signatures may prove to be useful tools to assess ccRCC grade and stage and could potentially add to current prognostic models. Multiphase CT-based radiomics signatures have potential to serve as a non-invasive stratification schema for distinguishing between low- and high-grade as well as low- and high-stage ccRCC.• Radiomics signatures derived from clinical multiphase CT images were able to stratify low- from high-grade ccRCC, with an AUC of 0.70 (95% CI 0.62-0.78). • Radiomics signatures derived from multiphase CT images yielded discriminative power to stratify low from high TNM stage in ccRCC, with an AUC of 0.80 (95% CI 0.74-0.86). • Models created using only robust radiomics features achieved comparable AUCs of 0.73 (95% CI 0.65-0.80) and 0.77 (95% CI 0.70-0.84) to the model with all radiomics features in classifying ccRCC grade and stage, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助橙色的小火山采纳,获得10
刚刚
刚刚
qiuqiu发布了新的文献求助10
1秒前
迷你的梦旋完成签到,获得积分20
1秒前
PG发布了新的文献求助10
1秒前
1秒前
2秒前
yiyi完成签到,获得积分10
3秒前
超级的翎发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
博远发布了新的文献求助10
7秒前
7秒前
丁磊完成签到,获得积分10
7秒前
hgf发布了新的文献求助30
7秒前
7秒前
无花果应助维多利亚少年采纳,获得10
7秒前
8秒前
腿毛没啦完成签到,获得积分10
8秒前
8秒前
8秒前
wyb发布了新的文献求助10
9秒前
上官小玉发布了新的文献求助10
9秒前
CodeCraft应助PG采纳,获得10
9秒前
9秒前
奥利锋发布了新的文献求助10
10秒前
10秒前
bkagyin应助dzz采纳,获得10
10秒前
彭于晏应助称心雁菡采纳,获得10
11秒前
11秒前
KKKK发布了新的文献求助10
12秒前
王士钰完成签到,获得积分10
12秒前
12秒前
乐正天与发布了新的文献求助10
12秒前
12秒前
深情安青应助顺心白开水采纳,获得20
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760503
求助须知:如何正确求助?哪些是违规求助? 5525145
关于积分的说明 15397760
捐赠科研通 4897376
什么是DOI,文献DOI怎么找? 2634169
邀请新用户注册赠送积分活动 1582215
关于科研通互助平台的介绍 1537621