CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma

医学 肾透明细胞癌 阶段(地层学) 无线电技术 接收机工作特性 神经组阅片室 肾细胞癌 清除单元格 肿瘤分级 放射科 曲线下面积 核医学 内科学 癌症 古生物学 精神科 生物 神经学
作者
Natalie L. Demirjian,Bino Varghese,Steven Cen,Darryl Hwang,Manju Aron,Imran Siddiqui,Brandon K.K. Fields,Xiaomeng Lei,Felix Y. Yap,Marielena Rivas,Sharath S. Reddy,Haris Zahoor,Derek Liu,Mihir Desai,Suhn K. Rhie,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (4): 2552-2563 被引量:86
标识
DOI:10.1007/s00330-021-08344-4
摘要

To evaluate the utility of CT-based radiomics signatures in discriminating low-grade (grades 1-2) clear cell renal cell carcinomas (ccRCC) from high-grade (grades 3-4) and low TNM stage (stages I-II) ccRCC from high TNM stage (stages III-IV).A total of 587 subjects (mean age 60.2 years ± 12.2; range 22-88.7 years) with ccRCC were included. A total of 255 tumors were high grade and 153 were high stage. For each subject, one dominant tumor was delineated as the region of interest (ROI). Our institutional radiomics pipeline was then used to extract 2824 radiomics features across 12 texture families from the manually segmented volumes of interest. Separate iterations of the machine learning models using all extracted features (full model) as well as only a subset of previously identified robust metrics (robust model) were developed. Variable of importance (VOI) analysis was performed using the out-of-bag Gini index to identify the top 10 radiomics metrics driving each classifier. Model performance was reported using area under the receiver operating curve (AUC).The highest AUC to distinguish between low- and high-grade ccRCC was 0.70 (95% CI 0.62-0.78) and the highest AUC to distinguish between low- and high-stage ccRCC was 0.80 (95% CI 0.74-0.86). Comparable AUCs of 0.73 (95% CI 0.65-0.8) and 0.77 (95% CI 0.7-0.84) were reported using the robust model for grade and stage classification, respectively. VOI analysis revealed the importance of neighborhood operation-based methods, including GLCM, GLDM, and GLRLM, in driving the performance of the robust models for both grade and stage classification.Post-validation, CT-based radiomics signatures may prove to be useful tools to assess ccRCC grade and stage and could potentially add to current prognostic models. Multiphase CT-based radiomics signatures have potential to serve as a non-invasive stratification schema for distinguishing between low- and high-grade as well as low- and high-stage ccRCC.• Radiomics signatures derived from clinical multiphase CT images were able to stratify low- from high-grade ccRCC, with an AUC of 0.70 (95% CI 0.62-0.78). • Radiomics signatures derived from multiphase CT images yielded discriminative power to stratify low from high TNM stage in ccRCC, with an AUC of 0.80 (95% CI 0.74-0.86). • Models created using only robust radiomics features achieved comparable AUCs of 0.73 (95% CI 0.65-0.80) and 0.77 (95% CI 0.70-0.84) to the model with all radiomics features in classifying ccRCC grade and stage, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助欢喜的元霜采纳,获得10
1秒前
赘婿应助学术羊采纳,获得10
1秒前
Vane完成签到,获得积分10
1秒前
张新惠发布了新的文献求助10
2秒前
pikal完成签到,获得积分10
2秒前
LM完成签到,获得积分20
2秒前
华仔应助隐形的乐枫采纳,获得10
3秒前
小手套~发布了新的文献求助10
3秒前
小青椒应助顺利的天真采纳,获得30
4秒前
李爱国应助李健春采纳,获得10
4秒前
4秒前
科研鼠发布了新的文献求助10
4秒前
5秒前
5秒前
lei发布了新的文献求助20
6秒前
百里笑晴完成签到,获得积分10
6秒前
yiwan发布了新的文献求助10
7秒前
Criminology34应助彩色的捕采纳,获得10
7秒前
闪闪的摩托完成签到,获得积分10
7秒前
7秒前
子不语完成签到,获得积分10
8秒前
ShmilyLJQ应助yyds采纳,获得50
8秒前
哎呀完成签到,获得积分10
8秒前
8秒前
9秒前
Tourist给研友_Good Hope的求助进行了留言
9秒前
CY发布了新的文献求助10
9秒前
10秒前
小鑫星关注了科研通微信公众号
11秒前
小马甲应助大婷子采纳,获得10
12秒前
13秒前
ding应助冯广采纳,获得10
13秒前
万能图书馆应助宋宋宋2采纳,获得10
13秒前
浮游应助淡淡的芾采纳,获得10
13秒前
airvi发布了新的文献求助10
13秒前
13秒前
不会取名啊完成签到,获得积分10
14秒前
cwq921完成签到,获得积分10
14秒前
跳跃的壮壮完成签到,获得积分10
14秒前
someone发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5111526
求助须知:如何正确求助?哪些是违规求助? 4319720
关于积分的说明 13459271
捐赠科研通 4150427
什么是DOI,文献DOI怎么找? 2274173
邀请新用户注册赠送积分活动 1276148
关于科研通互助平台的介绍 1214369