CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma

医学 肾透明细胞癌 阶段(地层学) 无线电技术 接收机工作特性 神经组阅片室 肾细胞癌 清除单元格 肿瘤分级 放射科 曲线下面积 核医学 内科学 癌症 古生物学 精神科 生物 神经学
作者
Natalie L. Demirjian,Bino Varghese,Steven Cen,Darryl Hwang,Manju Aron,Imran Siddiqui,Brandon K.K. Fields,Xiaomeng Lei,Felix Y. Yap,Marielena Rivas,Sharath S. Reddy,Haris Zahoor,Derek Liu,Mihir Desai,Suhn K. Rhie,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2552-2563 被引量:86
标识
DOI:10.1007/s00330-021-08344-4
摘要

To evaluate the utility of CT-based radiomics signatures in discriminating low-grade (grades 1-2) clear cell renal cell carcinomas (ccRCC) from high-grade (grades 3-4) and low TNM stage (stages I-II) ccRCC from high TNM stage (stages III-IV).A total of 587 subjects (mean age 60.2 years ± 12.2; range 22-88.7 years) with ccRCC were included. A total of 255 tumors were high grade and 153 were high stage. For each subject, one dominant tumor was delineated as the region of interest (ROI). Our institutional radiomics pipeline was then used to extract 2824 radiomics features across 12 texture families from the manually segmented volumes of interest. Separate iterations of the machine learning models using all extracted features (full model) as well as only a subset of previously identified robust metrics (robust model) were developed. Variable of importance (VOI) analysis was performed using the out-of-bag Gini index to identify the top 10 radiomics metrics driving each classifier. Model performance was reported using area under the receiver operating curve (AUC).The highest AUC to distinguish between low- and high-grade ccRCC was 0.70 (95% CI 0.62-0.78) and the highest AUC to distinguish between low- and high-stage ccRCC was 0.80 (95% CI 0.74-0.86). Comparable AUCs of 0.73 (95% CI 0.65-0.8) and 0.77 (95% CI 0.7-0.84) were reported using the robust model for grade and stage classification, respectively. VOI analysis revealed the importance of neighborhood operation-based methods, including GLCM, GLDM, and GLRLM, in driving the performance of the robust models for both grade and stage classification.Post-validation, CT-based radiomics signatures may prove to be useful tools to assess ccRCC grade and stage and could potentially add to current prognostic models. Multiphase CT-based radiomics signatures have potential to serve as a non-invasive stratification schema for distinguishing between low- and high-grade as well as low- and high-stage ccRCC.• Radiomics signatures derived from clinical multiphase CT images were able to stratify low- from high-grade ccRCC, with an AUC of 0.70 (95% CI 0.62-0.78). • Radiomics signatures derived from multiphase CT images yielded discriminative power to stratify low from high TNM stage in ccRCC, with an AUC of 0.80 (95% CI 0.74-0.86). • Models created using only robust radiomics features achieved comparable AUCs of 0.73 (95% CI 0.65-0.80) and 0.77 (95% CI 0.70-0.84) to the model with all radiomics features in classifying ccRCC grade and stage, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小二郎应助qss8807采纳,获得10
刚刚
zhaoaotao完成签到,获得积分10
1秒前
李八百完成签到,获得积分10
2秒前
搞怪白秋发布了新的文献求助10
2秒前
楸霁完成签到,获得积分10
2秒前
ding应助luster采纳,获得10
2秒前
简简单单完成签到,获得积分10
3秒前
3秒前
深情安青应助xm采纳,获得10
3秒前
从容的完成签到 ,获得积分10
3秒前
君姊发布了新的文献求助10
4秒前
稳住完成签到,获得积分10
4秒前
Ray完成签到,获得积分10
5秒前
WH发布了新的文献求助10
5秒前
虚幻孤丹发布了新的文献求助10
5秒前
6秒前
登登发布了新的文献求助10
7秒前
CodeCraft应助楸霁采纳,获得10
7秒前
7秒前
Arzu发布了新的文献求助10
7秒前
7秒前
Hello应助大气乐儿采纳,获得10
9秒前
9秒前
搞怪白秋完成签到,获得积分10
10秒前
cheng发布了新的文献求助10
10秒前
黎明发布了新的文献求助10
12秒前
12秒前
12秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
上官若男应助可耐的碧萱采纳,获得10
15秒前
15秒前
15秒前
识途完成签到,获得积分10
15秒前
15秒前
16秒前
今后应助司徒不二采纳,获得10
16秒前
史迪仔发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860