亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma

医学 肾透明细胞癌 阶段(地层学) 无线电技术 接收机工作特性 神经组阅片室 肾细胞癌 清除单元格 肿瘤分级 放射科 曲线下面积 核医学 内科学 癌症 古生物学 精神科 生物 神经学
作者
Natalie L. Demirjian,Bino Varghese,Steven Cen,Darryl Hwang,Manju Aron,Imran Siddiqui,Brandon K. K. Fields,Xiaomeng Lei,Felix Y. Yap,Marielena Rivas,Sharath S. Reddy,Haris Zahoor,Derek Liu,Mihir Desai,Suhn K. Rhie,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2552-2563 被引量:59
标识
DOI:10.1007/s00330-021-08344-4
摘要

To evaluate the utility of CT-based radiomics signatures in discriminating low-grade (grades 1-2) clear cell renal cell carcinomas (ccRCC) from high-grade (grades 3-4) and low TNM stage (stages I-II) ccRCC from high TNM stage (stages III-IV).A total of 587 subjects (mean age 60.2 years ± 12.2; range 22-88.7 years) with ccRCC were included. A total of 255 tumors were high grade and 153 were high stage. For each subject, one dominant tumor was delineated as the region of interest (ROI). Our institutional radiomics pipeline was then used to extract 2824 radiomics features across 12 texture families from the manually segmented volumes of interest. Separate iterations of the machine learning models using all extracted features (full model) as well as only a subset of previously identified robust metrics (robust model) were developed. Variable of importance (VOI) analysis was performed using the out-of-bag Gini index to identify the top 10 radiomics metrics driving each classifier. Model performance was reported using area under the receiver operating curve (AUC).The highest AUC to distinguish between low- and high-grade ccRCC was 0.70 (95% CI 0.62-0.78) and the highest AUC to distinguish between low- and high-stage ccRCC was 0.80 (95% CI 0.74-0.86). Comparable AUCs of 0.73 (95% CI 0.65-0.8) and 0.77 (95% CI 0.7-0.84) were reported using the robust model for grade and stage classification, respectively. VOI analysis revealed the importance of neighborhood operation-based methods, including GLCM, GLDM, and GLRLM, in driving the performance of the robust models for both grade and stage classification.Post-validation, CT-based radiomics signatures may prove to be useful tools to assess ccRCC grade and stage and could potentially add to current prognostic models. Multiphase CT-based radiomics signatures have potential to serve as a non-invasive stratification schema for distinguishing between low- and high-grade as well as low- and high-stage ccRCC.• Radiomics signatures derived from clinical multiphase CT images were able to stratify low- from high-grade ccRCC, with an AUC of 0.70 (95% CI 0.62-0.78). • Radiomics signatures derived from multiphase CT images yielded discriminative power to stratify low from high TNM stage in ccRCC, with an AUC of 0.80 (95% CI 0.74-0.86). • Models created using only robust radiomics features achieved comparable AUCs of 0.73 (95% CI 0.65-0.80) and 0.77 (95% CI 0.70-0.84) to the model with all radiomics features in classifying ccRCC grade and stage, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彭于晏应助shenhai采纳,获得10
19秒前
Bingtao_Lian完成签到 ,获得积分10
30秒前
31秒前
星落枝头发布了新的文献求助10
37秒前
42秒前
42秒前
iwaking完成签到,获得积分10
42秒前
朱朱子完成签到 ,获得积分10
57秒前
兔子不秃头y完成签到 ,获得积分10
58秒前
EmmaEmma完成签到,获得积分20
1分钟前
菜菜蔡儿完成签到 ,获得积分10
1分钟前
无问完成签到,获得积分10
1分钟前
不去明知山完成签到 ,获得积分10
1分钟前
王哈哈发布了新的文献求助10
2分钟前
2分钟前
shenhai发布了新的文献求助10
2分钟前
搜集达人应助王哈哈采纳,获得10
2分钟前
2分钟前
2分钟前
winkyyang完成签到 ,获得积分10
2分钟前
Luke Gee完成签到 ,获得积分10
2分钟前
斯文败类应助shenhai采纳,获得10
2分钟前
小可完成签到 ,获得积分10
2分钟前
暮桉完成签到,获得积分20
2分钟前
2分钟前
ahui发布了新的文献求助10
2分钟前
Ava应助暮桉采纳,获得10
2分钟前
2分钟前
科研小刘完成签到,获得积分10
2分钟前
2分钟前
爱科研的小周完成签到 ,获得积分10
2分钟前
2分钟前
明理的茹妖完成签到 ,获得积分10
2分钟前
he完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
英俊的铭应助泡面小猪采纳,获得10
2分钟前
勿昂完成签到 ,获得积分0
2分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136993
求助须知:如何正确求助?哪些是违规求助? 2787960
关于积分的说明 7784062
捐赠科研通 2444016
什么是DOI,文献DOI怎么找? 1299609
科研通“疑难数据库(出版商)”最低求助积分说明 625497
版权声明 600989