CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma

医学 肾透明细胞癌 阶段(地层学) 无线电技术 接收机工作特性 神经组阅片室 肾细胞癌 清除单元格 肿瘤分级 放射科 曲线下面积 核医学 内科学 癌症 古生物学 精神科 生物 神经学
作者
Natalie L. Demirjian,Bino Varghese,Steven Cen,Darryl Hwang,Manju Aron,Imran Siddiqui,Brandon K.K. Fields,Xiaomeng Lei,Felix Y. Yap,Marielena Rivas,Sharath S. Reddy,Haris Zahoor,Derek Liu,Mihir Desai,Suhn K. Rhie,Inderbir S. Gill,Vinay Duddalwar
出处
期刊:European Radiology [Springer Nature]
卷期号:32 (4): 2552-2563 被引量:96
标识
DOI:10.1007/s00330-021-08344-4
摘要

To evaluate the utility of CT-based radiomics signatures in discriminating low-grade (grades 1-2) clear cell renal cell carcinomas (ccRCC) from high-grade (grades 3-4) and low TNM stage (stages I-II) ccRCC from high TNM stage (stages III-IV).A total of 587 subjects (mean age 60.2 years ± 12.2; range 22-88.7 years) with ccRCC were included. A total of 255 tumors were high grade and 153 were high stage. For each subject, one dominant tumor was delineated as the region of interest (ROI). Our institutional radiomics pipeline was then used to extract 2824 radiomics features across 12 texture families from the manually segmented volumes of interest. Separate iterations of the machine learning models using all extracted features (full model) as well as only a subset of previously identified robust metrics (robust model) were developed. Variable of importance (VOI) analysis was performed using the out-of-bag Gini index to identify the top 10 radiomics metrics driving each classifier. Model performance was reported using area under the receiver operating curve (AUC).The highest AUC to distinguish between low- and high-grade ccRCC was 0.70 (95% CI 0.62-0.78) and the highest AUC to distinguish between low- and high-stage ccRCC was 0.80 (95% CI 0.74-0.86). Comparable AUCs of 0.73 (95% CI 0.65-0.8) and 0.77 (95% CI 0.7-0.84) were reported using the robust model for grade and stage classification, respectively. VOI analysis revealed the importance of neighborhood operation-based methods, including GLCM, GLDM, and GLRLM, in driving the performance of the robust models for both grade and stage classification.Post-validation, CT-based radiomics signatures may prove to be useful tools to assess ccRCC grade and stage and could potentially add to current prognostic models. Multiphase CT-based radiomics signatures have potential to serve as a non-invasive stratification schema for distinguishing between low- and high-grade as well as low- and high-stage ccRCC.• Radiomics signatures derived from clinical multiphase CT images were able to stratify low- from high-grade ccRCC, with an AUC of 0.70 (95% CI 0.62-0.78). • Radiomics signatures derived from multiphase CT images yielded discriminative power to stratify low from high TNM stage in ccRCC, with an AUC of 0.80 (95% CI 0.74-0.86). • Models created using only robust radiomics features achieved comparable AUCs of 0.73 (95% CI 0.65-0.80) and 0.77 (95% CI 0.70-0.84) to the model with all radiomics features in classifying ccRCC grade and stage, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
liu关闭了liu文献求助
1秒前
2秒前
YanuoK完成签到,获得积分10
2秒前
明h发布了新的文献求助10
3秒前
李健应助www采纳,获得10
5秒前
碧蓝的半芹完成签到,获得积分10
5秒前
koi发布了新的文献求助10
5秒前
5秒前
李健的小迷弟应助lalalaaaa采纳,获得10
5秒前
虚幻无颜发布了新的文献求助10
6秒前
无极微光应助xinyi采纳,获得20
7秒前
FelixHe完成签到,获得积分10
7秒前
Tom左完成签到,获得积分10
7秒前
欣喜高丽完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
香酥板栗完成签到,获得积分10
8秒前
Starycat完成签到 ,获得积分20
10秒前
10秒前
科研顺利完成签到 ,获得积分10
10秒前
11秒前
11秒前
欢呼海露完成签到,获得积分10
12秒前
我是老大应助肖旻采纳,获得10
13秒前
ChatGPT发布了新的文献求助10
14秒前
霸气的小刺猬完成签到,获得积分10
15秒前
星辰大海应助小王同学采纳,获得10
15秒前
15秒前
NexusExplorer应助流云采纳,获得10
15秒前
kang完成签到,获得积分10
16秒前
16秒前
美满的烙关注了科研通微信公众号
17秒前
大白应助落落采纳,获得20
17秒前
大模型应助霸气的小刺猬采纳,获得10
18秒前
量子星尘发布了新的文献求助10
20秒前
Bertha完成签到,获得积分10
20秒前
JamesPei应助霸气的小刺猬采纳,获得10
20秒前
shendu完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462