An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission

败血症 医学 重症监护室 格拉斯哥昏迷指数 死亡率 风险因素 急诊医学 重症监护医学 内科学 外科
作者
Zhengyu Jiang,Lulong Bo,Zhenhua Xu,Yubing Song,Jiafeng Wang,Ping-shan Wen,Xiaojian Wan,Tao Yang,Xiaoming Deng,Jinjun Bian
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:204: 106040-106040 被引量:47
标识
DOI:10.1016/j.cmpb.2021.106040
摘要

Patients who survive sepsis in the intensive care unit (ICU) (sepsis survivors) have an increased risk of long-term mortality and ICU readmission. We aim to identify the risk factors for in-hospital mortality in sepsis survivors with later ICU readmission and visualize the quantitative relationship between the individual risk factors and mortality by applying machine learning (ML) algorithm. Data were obtained from the Medical Information Mart for Intensive Care III (MIMIC-III) database for sepsis and non-sepsis ICU survivors who were later readmitted to the ICU. The data on the first day of ICU readmission and the in-hospital mortality was combined for the ML algorithm modeling and the SHapley Additive exPlanations (SHAP) value of the correlation between the risk factors and the outcome. Among the 2970 enrolled patients, in-hospital mortality during ICU readmission was significantly higher in sepsis survivors (n = 2228) than nonsepsis survivors (n = 742) (50.4% versus 30.7%, P<0.001). The ML algorithm identified 18 features that were associated with a risk of mortality in these groups; among these, BUN, age, weight, and minimum heart rate were shared by both groups, and the remaining mean systolic pressure, urine output, albumin, platelets, lactate, activated partial thromboplastin time (APTT), potassium, pCO2, pO2, respiration rate, Glasgow Coma Scale (GCS) score for eye-opening, anion gap, sex and temperature were specific to previous sepsis survivors. The ML algorithm also calculated the quantitative contribution and noteworthy threshold of each factor to the risk of mortality in sepsis survivors. 14 specific parameters with corresponding thresholds were found to be associated with the in-hospital mortality of sepsis survivors during the ICU readmission. The construction of advanced ML techniques could support the analysis and development of predictive models that can be used to support the decisions and treatment strategies made in a clinical setting in critical care patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小王发布了新的文献求助10
1秒前
tough发布了新的文献求助10
1秒前
2秒前
2秒前
烟花应助阿哲采纳,获得10
2秒前
ding应助黄雪采纳,获得10
2秒前
憨莫急关注了科研通微信公众号
2秒前
3秒前
鲁以筠发布了新的文献求助10
3秒前
李爱国应助CTX采纳,获得10
4秒前
4秒前
香蕉觅云应助清欢采纳,获得10
4秒前
5秒前
xiaosee完成签到,获得积分10
5秒前
5秒前
阿十发布了新的文献求助10
6秒前
7秒前
7秒前
israr发布了新的文献求助10
7秒前
8秒前
xiaosee发布了新的文献求助10
8秒前
Hannahcx完成签到,获得积分10
8秒前
YANGVV完成签到 ,获得积分10
9秒前
chiech给chiech的求助进行了留言
9秒前
9秒前
10秒前
机智初夏发布了新的文献求助10
10秒前
尊敬怀薇完成签到,获得积分10
11秒前
11秒前
11秒前
小精灵发布了新的文献求助30
12秒前
xu发布了新的文献求助30
12秒前
12秒前
感动城完成签到,获得积分10
13秒前
文静的白开水完成签到,获得积分10
13秒前
LYSM完成签到,获得积分0
13秒前
13秒前
JHGG应助诶呀采纳,获得30
14秒前
矮小的雅香完成签到,获得积分10
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756148
求助须知:如何正确求助?哪些是违规求助? 3299357
关于积分的说明 10109848
捐赠科研通 3013911
什么是DOI,文献DOI怎么找? 1655353
邀请新用户注册赠送积分活动 789722
科研通“疑难数据库(出版商)”最低求助积分说明 753415