Use of artificial intelligence in the imaging of sarcopenia: A narrative review of current status and perspectives

肌萎缩 叙述性评论 电流(流体) 叙述的 医学 心理学 老年学 重症监护医学 内科学 工程类 哲学 语言学 电气工程
作者
Miłosz Rozynek,Iwona Kucybała,Andrzej Urbanik,Wadim Wojciechowski
出处
期刊:Nutrition [Elsevier]
卷期号:89: 111227-111227 被引量:19
标识
DOI:10.1016/j.nut.2021.111227
摘要

Sarcopenia is a muscle disease which previously was associated only with aging, but in recent days it has been gaining more attention for its predictive value in a vast range of conditions and its potential link with overall health. Up to this point, evaluating sarcopenia with imaging methods has been time-consuming and dependent on the skills of the physician. The solution for this problem may be found in artificial intelligence, which may assist radiologists in repetitive tasks such as muscle segmentation and body-composition analysis. The major aim of this review was to find and present the current status and future perspectives of artificial intelligence in the imaging of sarcopenia. We searched the PubMed database to find articles concerning the use of artificial intelligence in diagnostic imaging and especially in body-composition analysis in the context of sarcopenia. We found that artificial-intelligence systems could potentially help with evaluating sarcopenia and better predicting outcomes in a vast range of clinical situations, which could get us closer to the true era of precision medicine. • Sarcopenia has an impact on outcomes in various diseases, not only in elderly people. • Artificial intelligence could be used to help evaluate sarcopenia. • Artificial-intelligence systems can alter the clinical importance of imaging modalities in diagnosing sarcopenia. • Automated methods in the evaluation of sarcopenia can potentially give us more information about patients and make clinical practice more tailored.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
qinglingdao应助Aylin采纳,获得10
2秒前
值雨完成签到,获得积分10
3秒前
Geodada完成签到,获得积分10
3秒前
杂货铺老板娘完成签到,获得积分10
3秒前
阿元完成签到,获得积分10
4秒前
小马甲应助int0030采纳,获得10
4秒前
圣诞快乐劳伦斯先生完成签到,获得积分10
4秒前
夏夏夏完成签到,获得积分10
5秒前
5秒前
飞哥发布了新的文献求助10
6秒前
AstroWander完成签到,获得积分10
6秒前
喂喂完成签到,获得积分10
6秒前
笑点低嵩完成签到,获得积分10
6秒前
文艺的平松关注了科研通微信公众号
6秒前
英俊的铭应助我的miemie采纳,获得10
7秒前
情怀应助22采纳,获得10
7秒前
科目三应助neurospine采纳,获得10
7秒前
8秒前
可耐的手机完成签到 ,获得积分10
8秒前
9秒前
janejane完成签到 ,获得积分20
9秒前
coconut完成签到,获得积分10
12秒前
李健应助李咸咸123采纳,获得10
12秒前
13秒前
14秒前
14秒前
14秒前
元谷雪应助科研通管家采纳,获得10
15秒前
Lucas应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
元谷雪应助科研通管家采纳,获得10
15秒前
15秒前
wxz1998发布了新的文献求助10
16秒前
17秒前
ssssbbbb完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143796
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814709
捐赠科研通 2451390
什么是DOI,文献DOI怎么找? 1304463
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419