药代动力学
医学
万古霉素
治疗药物监测
分配量
四分位间距
人口
重症监护医学
内科学
肾功能
生物
遗传学
环境卫生
细菌
金黄色葡萄球菌
作者
Abdullah Aljutayli,Ibrahim El‐Haffaf,Amélie Marsot,Fahima Nekka
标识
DOI:10.1007/s40262-021-01050-w
摘要
Vancomycin is widely used in pediatric patients, however, large inter- and intraindividual variability are observed in vancomycin pharmacokinetics, affecting proper therapeutic monitoring. This review aimed at providing a comprehensive synthesis of the population pharmacokinetic models of vancomycin in pediatric patients and identifying potential factors responsible for the variability observed in various subpopulations. We conducted a literature search of the PubMed and EMBASE databases to obtain population pharmacokinetic studies for vancomycin published between January 2011 and January 2020, which resulted in a total of 33 studies. Vancomycin pharmacokinetics were generally characterized using a one-compartment model (n = 27), while a two-compartment model was used in six studies. The median (interquartile range) of the typical vancomycin clearance (CL) and the total volume of distribution adjusted to the median or mean body weight of the respective study was 0.103 L/h/kg (0.071-0.125) and 0.64 L/kg (0.59-1.03), respectively. Median weight-adjusted CL between different child age groups, such as infants and adolescents, did not appear to vary significantly, although the sample size for many age groups was very small. Examples of the conditions with relatively abnormal vancomycin pharmacokinetic values include renal insufficiency, sepsis, hematological and solid malignancy, and hypothermia treatment. Factors influencing pediatric vancomycin pharmacokinetics after adjusting for size and maturation include various renal function descriptors and some case-specific variables such as dialysate flow rate, ultrafiltrate output, and hypothermia. This review was able to document possible variables explaining the high variability observed in certain subpopulations and contrast vancomycin pharmacokinetics in different pediatric subpopulations.
科研通智能强力驱动
Strongly Powered by AbleSci AI