糖蛋白组学
计算机科学
错误发现率
蛋白质组
仿形(计算机编程)
数据挖掘
推论
蛋白质组学
计算生物学
生物信息学
人工智能
生物
生物化学
基因
操作系统
作者
Yi Yang,Guoquan Yan,Siyuan Kong,Mengxi Wu,Pengyuan Yang,Weiqian Cao,Liang Qiao
标识
DOI:10.1038/s41467-021-26246-3
摘要
Abstract Large-scale profiling of intact glycopeptides is critical but challenging in glycoproteomics. Data independent acquisition (DIA) is an emerging technology with deep proteome coverage and accurate quantitative capability in proteomics studies, but is still in the early stage of development in the field of glycoproteomics. We propose GproDIA, a framework for the proteome-wide characterization of intact glycopeptides from DIA data with comprehensive statistical control by a 2-dimentional false discovery rate approach and a glycoform inference algorithm, enabling accurate identification of intact glycopeptides using wide isolation windows. We further utilize a semi-empirical spectrum prediction strategy to expand the coverage of spectral libraries of glycopeptides. We benchmark our method for N-glycopeptide profiling on DIA data of yeast and human serum samples, demonstrating that DIA with GproDIA outperforms the data-dependent acquisition-based methods for glycoproteomics in terms of capacity and data completeness of identification, as well as accuracy and precision of quantification. We expect that this work can provide a powerful tool for glycoproteomic studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI