已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An intelligent system for monitoring students' engagement in large classroom teaching through facial expression recognition

计算机科学 无聊 脱离理论 学生参与度 卷积神经网络 面部表情 人机交互 可扩展性 机器学习 多媒体 人工智能 数学教育 心理学 医学 老年学 数据库 社会心理学
作者
Chakradhar Pabba,Praveen Kumar
出处
期刊:Expert Systems [Wiley]
卷期号:39 (1) 被引量:80
标识
DOI:10.1111/exsy.12839
摘要

Abstract Students' disengagement problem has become critical in the modern scenario due to various distractions and lack of student‐teacher interactions. This problem is exacerbated with large offline classrooms, where it becomes challenging for teachers to monitor students' engagement and maintain the right‐level of interactions. Traditional ways of monitoring students' engagement rely on self‐reporting or using physical devices, which have limitations for offline classroom use. Student's academic affective states (e.g., moods and emotions) analysis has potential for creating intelligent classrooms, which can autonomously monitor and analyse students' engagement and behaviours in real‐time. In recent literature, a few computer vision based methods have been proposed, but they either work only in the e‐learning domain or have limitations in real‐time processing and scalability for large offline classes. This paper presents a real‐time system for student group engagement monitoring by analysing their facial expressions and recognizing academic affective states: ‘boredom,’ ‘confuse,’ ‘focus,’ ‘frustrated,’ ‘yawning,’ and ‘sleepy,’ which are pertinent in the learning environment. The methodology includes certain pre‐processing steps like face detection, a convolutional neural network (CNN) based facial expression recognition model, and post‐processing steps like frame‐wise group engagement estimation. For training the CNN model, we created a dataset of the aforementioned facial expressions from classroom lecture videos and added related samples from three publicly available datasets, BAUM‐1, DAiSEE, and YawDD, to generalize the model predictions. The trained model has achieved train and test accuracy of 78.70% and 76.90%, respectively. The proposed methodology gave promising results when compared with self‐reported engagement levels by students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王富贵发布了新的文献求助10
2秒前
judy完成签到,获得积分10
4秒前
酷炫紫萍完成签到,获得积分10
6秒前
发发完成签到,获得积分10
7秒前
8秒前
希望天下0贩的0应助无1122采纳,获得10
9秒前
9秒前
吖牙完成签到,获得积分10
9秒前
yellow发布了新的文献求助10
11秒前
英俊的铭应助Sophia采纳,获得10
11秒前
小蘑菇应助等待的靖雁采纳,获得10
12秒前
甜甜谷雪发布了新的文献求助10
12秒前
13秒前
开心夏真发布了新的文献求助10
15秒前
16秒前
风中音响发布了新的文献求助30
17秒前
CipherSage应助李想采纳,获得10
20秒前
mhl11应助zzl采纳,获得10
21秒前
99v587完成签到,获得积分10
27秒前
sfx发布了新的文献求助10
29秒前
30秒前
30秒前
谦让远望发布了新的文献求助10
34秒前
34秒前
李想发布了新的文献求助10
35秒前
sfx完成签到,获得积分10
36秒前
不晓天完成签到,获得积分10
38秒前
40秒前
不准吃烤肉完成签到,获得积分10
46秒前
46秒前
李想完成签到,获得积分20
48秒前
lalala发布了新的文献求助10
49秒前
可爱的函函应助jiujiuhuang采纳,获得10
50秒前
王富贵完成签到,获得积分20
50秒前
于夜柳完成签到,获得积分20
52秒前
咕噜咕噜发布了新的文献求助10
52秒前
55秒前
funny完成签到,获得积分10
56秒前
顾矜应助10K采纳,获得10
56秒前
57秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310962
求助须知:如何正确求助?哪些是违规求助? 2943713
关于积分的说明 8516191
捐赠科研通 2619029
什么是DOI,文献DOI怎么找? 1431813
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649752