Development and validation of a ferroptosis-related prognostic model for the prediction of progression-free survival and immune microenvironment in patients with papillary thyroid carcinoma

肿瘤科 肿瘤微环境 内科学 人类白细胞抗原 无进展生存期 甲状腺癌 生存分析 医学 癌症研究 生物 免疫系统 癌症 甲状腺 总体生存率 免疫学 抗原
作者
Yinde Huang,Zhenyu Xie,Xin Li,Wenbin Chen,Yuzhen He,Song Wu,Xinyang Li,Bingchen Hou,Jianjian Sun,Shiyue Wang,Yuchen He,Han Jiang,Yu Lun,Jian Zhang
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:101 (Pt A): 108156-108156 被引量:9
标识
DOI:10.1016/j.intimp.2021.108156
摘要

Ferroptosis is an iron-dependent and regulated cell death that has been widely reported in a variety of malignancies. The overall survival of papillary thyroid cancer (PTC) is excellent, but the identification of patients with poor prognosis still faces challenges. Nevertheless, whether ferroptosis-related genes (FRGs) can be used to screen high-risk patients is not clear.We obtained the clinical data of patients with PTC and FRGs from the UCSC Xena platform and the FerrDb respectively. Differentially expressed genes (DEGs) of FRGs were obtained from the entire The Cancer Genome Atlas (TCGA). Subsequently, the entire TCGA dataset was randomly split into two subsets: training and test datasets. Based on DEGs, we constructed a predictive model which was tested in the test dataset and the entire TCGA dataset to predict progression-free survival (PFS). Patients were categorized into high- or low-risk groups based on their median risk score. We analyzed differences in some aspects, including pathway enrichment analysis, single-sample Gene Set Enrichment Analysis (ssGSEA), tumor microenvironment (TME), human leukocyte antigen (HLA) genes, and tumor mutation burden (TMB) analyses, between high-risk and low-risk groups.A predictive model with three FRGs (HSPA5, AURKA, and TSC22D3) was constructed. Patients in the high-risk group had worse PFS compared with patients in the low-risk group. Functional analysis results revealed that ssGSEA, immune cell infiltration, TME, HLA, and TMB were closely associated with ferroptosis.The prognostic model constructed in this study can effectively predict PFS for patients with PTC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
九幺完成签到 ,获得积分10
1秒前
两块钱打工人完成签到,获得积分10
2秒前
某只橘猫君完成签到,获得积分10
3秒前
3秒前
NexusExplorer应助雪糕采纳,获得10
4秒前
4秒前
4秒前
zhengyue2233完成签到,获得积分10
4秒前
jacky_cjc1完成签到 ,获得积分10
4秒前
南枳完成签到 ,获得积分10
5秒前
will驳回了传奇3应助
5秒前
5秒前
科研通AI2S应助zhoujiaxu采纳,获得10
5秒前
6秒前
畅快的文龙完成签到,获得积分10
7秒前
LEGEND完成签到,获得积分10
8秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
8秒前
汉堡包应助childe采纳,获得10
8秒前
寒梅恋雪完成签到 ,获得积分10
9秒前
fgd发布了新的文献求助10
9秒前
超级的鹅完成签到,获得积分10
10秒前
11秒前
liuliuda完成签到 ,获得积分10
11秒前
11秒前
田様应助洛luo采纳,获得10
12秒前
逆流而上发布了新的文献求助10
12秒前
宋文祥发布了新的文献求助10
12秒前
黄健丰发布了新的文献求助10
13秒前
深情安青应助科研小秦采纳,获得10
15秒前
serendipity发布了新的文献求助10
16秒前
JThuo完成签到,获得积分10
17秒前
踏实的白羊完成签到,获得积分10
17秒前
穆梦山完成签到,获得积分10
18秒前
姜明哲完成签到 ,获得积分10
18秒前
make217完成签到 ,获得积分10
19秒前
清风完成签到 ,获得积分10
21秒前
22秒前
所所应助serendipity采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603615
求助须知:如何正确求助?哪些是违规求助? 4688619
关于积分的说明 14855047
捐赠科研通 4694226
什么是DOI,文献DOI怎么找? 2540896
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471806