量化(信号处理)
控制理论(社会学)
解耦(概率)
非线性系统
模糊逻辑
执行机构
计算机科学
观察员(物理)
分离原理
线性矩阵不等式
数学
控制器(灌溉)
国家观察员
控制系统
模糊控制系统
控制(管理)
控制工程
数学优化
算法
人工智能
工程类
物理
电气工程
生物
量子力学
农学
作者
Xiao‐Heng Chang,Xue Jin
标识
DOI:10.1016/j.amc.2021.126657
摘要
This paper investigates the observer-based quantized output feedback control for a kind of nonlinear discrete-time systems. The system studied in this paper is denoted by a Takagi–Sugeno (T–S) fuzzy model. Under digital communication channels, all transmitted signals between the system and the actuator (including the controller and the observer) will be quantized by the dynamic quantizers in the closed-loop system. Taking into consideration the design of the controller, observer, and dynamic parameters of quantizers, an effective matrix inequality decoupling method is presented to handle the problem. One is shown that the proposed design conditions of the controller, observer, dynamic parameters of quantizers are summarized in a matrix inequality, which can be synthesized synchronously. The resulting design ensures that the quantized closed-loop system can meet the prescribed H∞ performance. Finally, the availability and the feasibility of the presented design method are demonstrated by a mechanical motion system.
科研通智能强力驱动
Strongly Powered by AbleSci AI