Realistic Lung Nodule Synthesis With Multi-Target Co-Guided Adversarial Mechanism

计算机科学 特征(语言学) 人工智能 结核(地质) 纹理合成 图像(数学) 模式识别(心理学) 计算机视觉 图像分割 图像纹理 语言学 生物 哲学 古生物学
作者
Qiuli Wang,Xiaohong Zhang,Wei Zhang,Mingchen Gao,Sheng Huang,Li Wang,Jiuquan Zhang,Dan Yang,Chen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2343-2353 被引量:19
标识
DOI:10.1109/tmi.2021.3077089
摘要

The important cues for a realistic lung nodule synthesis include the diversity in shape and background, controllability of semantic feature levels, and overall CT image quality. To incorporate these cues as the multiple learning targets, we introduce the Multi-Target Co-Guided Adversarial Mechanism , which utilizes the foreground and background mask to guide nodule shape and lung tissues, takes advantage of the CT lung and mediastinal window as the guidance of spiculation and texture control, respectively. Further, we propose a Multi-Target Co-Guided Synthesizing Network with a joint loss function to realize the co-guidance of image generation and semantic feature learning. The proposed network contains a Mask-Guided Generative Adversarial Sub-Network (MGGAN) and a Window-Guided Semantic Learning Sub-Network (WGSLN). The MGGAN generates the initial synthesis using the mask combined with the foreground and background masks, guiding the generation of nodule shape and background tissues. Meanwhile, the WGSLN controls the semantic features and refines the synthesis quality by transforming the initial synthesis into the CT lung and mediastinal window, and performing the spiculation and texture learning simultaneously. We validated our method using the quantitative analysis of authenticity under the Fréchet Inception Score, and the results show its state-of-the-art performance. We also evaluated our method as a data augmentation method to predict malignancy level on the LIDC-IDRI database, and the results show that the accuracy of VGG-16 is improved by 5.6%. The experimental results confirm the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助Huang采纳,获得10
刚刚
Gdhdjxbbx发布了新的文献求助10
刚刚
1秒前
2秒前
ket完成签到,获得积分10
2秒前
ao发布了新的文献求助10
2秒前
独特南霜发布了新的文献求助10
3秒前
不厌发布了新的文献求助10
3秒前
4秒前
芸沐发布了新的文献求助10
4秒前
小马甲应助称心的妖妖采纳,获得10
4秒前
李健的粉丝团团长应助bey采纳,获得10
5秒前
善学以致用应助mogic采纳,获得30
5秒前
不安若颜发布了新的文献求助10
7秒前
心灵美的大山完成签到,获得积分10
7秒前
请你加倍努力完成签到,获得积分10
8秒前
天天快乐应助Yvonne采纳,获得10
8秒前
9秒前
吕小软完成签到,获得积分10
9秒前
土豪的荟完成签到,获得积分10
9秒前
炸虾仁发布了新的文献求助10
10秒前
华仔应助caixiayin采纳,获得10
11秒前
大模型应助taki采纳,获得10
11秒前
星辰大海应助rengar采纳,获得10
11秒前
ZZZZZ完成签到,获得积分10
11秒前
青寻完成签到,获得积分10
12秒前
不安豁完成签到,获得积分10
12秒前
搞笑5次完成签到,获得积分10
13秒前
罗小琴发布了新的文献求助10
14秒前
不安若颜完成签到,获得积分10
16秒前
PikaQ应助科研小白采纳,获得10
16秒前
17秒前
光亮的如松完成签到,获得积分10
17秒前
佘同学完成签到,获得积分20
17秒前
孙福禄应助芸沐采纳,获得10
18秒前
18秒前
19秒前
19秒前
平常的狗完成签到,获得积分10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650