Realistic Lung Nodule Synthesis With Multi-Target Co-Guided Adversarial Mechanism

计算机科学 特征(语言学) 人工智能 结核(地质) 纹理合成 图像(数学) 模式识别(心理学) 计算机视觉 图像分割 图像纹理 语言学 生物 哲学 古生物学
作者
Qiuli Wang,Xiaohong Zhang,Wei Zhang,Mingchen Gao,Sheng Huang,Li Wang,Jiuquan Zhang,Dan Yang,Chen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2343-2353 被引量:19
标识
DOI:10.1109/tmi.2021.3077089
摘要

The important cues for a realistic lung nodule synthesis include the diversity in shape and background, controllability of semantic feature levels, and overall CT image quality. To incorporate these cues as the multiple learning targets, we introduce the Multi-Target Co-Guided Adversarial Mechanism , which utilizes the foreground and background mask to guide nodule shape and lung tissues, takes advantage of the CT lung and mediastinal window as the guidance of spiculation and texture control, respectively. Further, we propose a Multi-Target Co-Guided Synthesizing Network with a joint loss function to realize the co-guidance of image generation and semantic feature learning. The proposed network contains a Mask-Guided Generative Adversarial Sub-Network (MGGAN) and a Window-Guided Semantic Learning Sub-Network (WGSLN). The MGGAN generates the initial synthesis using the mask combined with the foreground and background masks, guiding the generation of nodule shape and background tissues. Meanwhile, the WGSLN controls the semantic features and refines the synthesis quality by transforming the initial synthesis into the CT lung and mediastinal window, and performing the spiculation and texture learning simultaneously. We validated our method using the quantitative analysis of authenticity under the Fréchet Inception Score, and the results show its state-of-the-art performance. We also evaluated our method as a data augmentation method to predict malignancy level on the LIDC-IDRI database, and the results show that the accuracy of VGG-16 is improved by 5.6%. The experimental results confirm the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soory完成签到,获得积分10
刚刚
任性的傲柏完成签到,获得积分10
刚刚
lwk205完成签到,获得积分0
刚刚
1秒前
一一完成签到,获得积分10
1秒前
1秒前
1秒前
高中生完成签到,获得积分10
2秒前
2秒前
2秒前
希望天下0贩的0应助TT采纳,获得10
3秒前
xxegt完成签到 ,获得积分10
3秒前
4秒前
爱吃泡芙发布了新的文献求助10
4秒前
susu完成签到,获得积分10
6秒前
会神发布了新的文献求助10
6秒前
KK完成签到,获得积分10
7秒前
充电宝应助justin采纳,获得10
9秒前
10秒前
Ch完成签到 ,获得积分10
11秒前
13秒前
ajun完成签到,获得积分10
13秒前
13秒前
春江完成签到,获得积分10
13秒前
13秒前
漂亮的松思完成签到,获得积分20
16秒前
16秒前
xiuwen发布了新的文献求助10
17秒前
黑衣人的秘密完成签到,获得积分10
17秒前
17秒前
mushrooms119完成签到,获得积分10
18秒前
18秒前
榨菜发布了新的文献求助10
18秒前
Cindy应助体贴的夕阳采纳,获得10
18秒前
MEME完成签到,获得积分10
19秒前
zfzf0422发布了新的文献求助10
19秒前
19秒前
健忘曼云发布了新的文献求助10
19秒前
drift完成签到,获得积分10
20秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808