亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Realistic Lung Nodule Synthesis With Multi-Target Co-Guided Adversarial Mechanism

计算机科学 特征(语言学) 人工智能 结核(地质) 纹理合成 图像(数学) 模式识别(心理学) 计算机视觉 图像分割 图像纹理 古生物学 哲学 语言学 生物
作者
Qiuli Wang,Xiaohong Zhang,Wei Zhang,Mingchen Gao,Sheng Huang,Li Wang,Jiuquan Zhang,Dan Yang,Chen Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2343-2353 被引量:19
标识
DOI:10.1109/tmi.2021.3077089
摘要

The important cues for a realistic lung nodule synthesis include the diversity in shape and background, controllability of semantic feature levels, and overall CT image quality. To incorporate these cues as the multiple learning targets, we introduce the Multi-Target Co-Guided Adversarial Mechanism , which utilizes the foreground and background mask to guide nodule shape and lung tissues, takes advantage of the CT lung and mediastinal window as the guidance of spiculation and texture control, respectively. Further, we propose a Multi-Target Co-Guided Synthesizing Network with a joint loss function to realize the co-guidance of image generation and semantic feature learning. The proposed network contains a Mask-Guided Generative Adversarial Sub-Network (MGGAN) and a Window-Guided Semantic Learning Sub-Network (WGSLN). The MGGAN generates the initial synthesis using the mask combined with the foreground and background masks, guiding the generation of nodule shape and background tissues. Meanwhile, the WGSLN controls the semantic features and refines the synthesis quality by transforming the initial synthesis into the CT lung and mediastinal window, and performing the spiculation and texture learning simultaneously. We validated our method using the quantitative analysis of authenticity under the Fréchet Inception Score, and the results show its state-of-the-art performance. We also evaluated our method as a data augmentation method to predict malignancy level on the LIDC-IDRI database, and the results show that the accuracy of VGG-16 is improved by 5.6%. The experimental results confirm the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助菠萝采纳,获得10
1秒前
余可馨发布了新的文献求助10
2秒前
5秒前
9秒前
科研通AI6应助余可馨采纳,获得10
11秒前
12秒前
菠萝发布了新的文献求助10
13秒前
UpLiu完成签到 ,获得积分10
26秒前
31秒前
40秒前
Jasper应助维颖采纳,获得10
43秒前
小花小宝和阿飞完成签到 ,获得积分10
48秒前
吴端完成签到,获得积分10
49秒前
贪玩老姆完成签到 ,获得积分10
54秒前
tj完成签到 ,获得积分10
59秒前
1分钟前
阳佟水蓉完成签到,获得积分10
1分钟前
1分钟前
所所应助zhvjdb采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
可爱的函函应助早川采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430